Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Insects ; 14(11)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37999082

RESUMEN

Termites are eusocial insects. Chemical signals between colony members are crucial to the smooth running of colony operations, but little is known about their olfactory system and the roles played by various chemosensory genes in this process. Chemosensory genes are involved in basic olfactory perception in insects. Odontotermes formosanus (Shiraki) is one of the most damaging pests to agricultural crops, forests, and human-made structures. To better understand the olfactory system and the genes involved in olfactory processing in O. formosanus, we produced a transcriptome of worker termites. In this study, we identified 13 OforOBPs, 1 OforCSP, 15 OforORs, 9 OforGRs, and 4 OforSNMPs. Multiple sequence alignments were used in the phylogenetic study, which included data from other termite species and a wide variety of insect species. Moreover, we also investigated the mRNA expression levels using qRT-PCR. The significantly high expression levels of OforCSP1, OforOBP2, OforOR1, and OforSNMP1 suggest that these genes may play important roles in olfactory processing in termite social behavior, including caste differentiation, nestmate and non-nestmate discrimination, and the performance of colony operations among members. Our research establishes a foundation for future molecular-level functional studies of chemosensory genes in O. formosanus, which might lead to the identification of novel targets for termite integrated pest management.

2.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047722

RESUMEN

With the passage of time and indiscreet usage of insecticides on crops, aphids are becoming resistant to their effect. The different classes of insecticides, including organophosphates, carbamates, pyrethroids and neonicotinoids, have varied effects on insects. Furthermore, the molecular effects of these insecticides in aphids, including effects on the enzymatic machinery and gene mutation, are resulting in aphid resistance to the insecticides. In this review, we will discuss how aphids are affected by the overuse of pesticides, how resistance appears, and which mechanisms participate in the resistance mechanisms in various aphid species as significant crop pests. Gene expression studies were analyzed using the RNA-Seq technique. The stress-responsive genes were analyzed, and their expression in response to insecticide administration was determined. Putative insecticide resistance-related genes, cytochrome P450, glutathione S-transferase, carboxylesterase CarEs, ABC transporters, cuticle protein genes, and trypsin-related genes were studied. The review concluded that if insecticide-susceptible aphids interact with ample dosages of insecticides with sublethal effects, this will result in the upregulation of genes whose primary role is to detoxify insecticides. In the past decade, certain advancements have been observed regarding insecticide resistance on a molecular basis. Even so, not much is known about how aphids detoxify the insecticides at molecular level. Thus, to attain equilibrium, it is important to observe the manipulation of pest and insect species with the aim of restoring susceptibility to insecticides. For this purpose, this review has included critical insights into insecticide resistance in aphids.


Asunto(s)
Áfidos , Insecticidas , Piretrinas , Animales , Insecticidas/farmacología , Áfidos/fisiología , Piretrinas/farmacología , Carbamatos/farmacología , Neonicotinoides/farmacología , Resistencia a los Insecticidas/genética
3.
Insects ; 13(9)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36135547

RESUMEN

The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is the most notorious insect pest of potato globally. Injudicious use of insecticides for management of this pest has resulted in resistance to all major groups of insecticides along with many human, animal health, and environmental concerns. Additionally, the input cost of insecticide development/discovery is markedly increasing because each year thousands of chemicals are produced and tested for their insecticidal properties, requiring billions of dollars. For the management of resistance in insect pests, synergists can play a pivotal role by reducing the application dose of most insecticides. These eco-friendly synergists can be classified into two types: plant-based synergists and RNAi-based synergists. The use of plant-based and RNAi-based synergists in resistance management of insect pests can give promising results with lesser environmental side effects. This review summarizes the resistance status of CPB and discusses the potential advantage of plant-based and RNAi-based synergists for CPB resistance management. It will motivate researchers to further investigate the techniques of using plant- and RNAi-based synergists in combination with insecticides.

4.
Insect Sci ; 27(3): 531-544, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30593726

RESUMEN

Chemosensory proteins (CSPs) play important roles in insects' chemoreception, although their specific functional roles have not been fully elucidated. In this study, we conducted the developmental expression patterns and competitive binding assay as well as knock-down assay by RNA interference both in vitro and in vivo to reveal the function of NlugCSP10 from the brown planthopper (BPH), Nilaparvata lugens (Stål), a major pest in rice plants. The results showed that NlugCSP10 messenger RNA was significantly higher in males than in females and correlated to gender, development and wing forms. The fluorescence binding assays revealed that NlugCSP10 exhibited the highest binding affinity with cis-3-hexenyl acetate, eicosane, and (+)-ß-pinene. Behavioral assay revealed that eicosane displayed attractant activity, while cis-3-hexenyl acetate, similar to (+)-ß-pinene significantly repelled N. lugens adults. Silencing of NlugCSP10, which is responsible for cis-3-hexenyl acetate binding, significantly disrupted cis-3-hexenyl acetate communication. Overall, findings of the present study showed that NlugCSP10 could selectively interrelate with numerous volatiles emitted from host plants and these ligands could be designated to develop slow-release mediators that attract/repel N. lugens and subsequently improve the exploration of plans to control this insect pest.


Asunto(s)
Alcanos/metabolismo , Hemípteros/fisiología , Receptores Odorantes/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Conducta , Productos Agrícolas , Femenino , Perfilación de la Expresión Génica , Hemípteros/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Repelentes de Insectos/metabolismo , Masculino , Oryza , Control de Plagas/métodos , Interferencia de ARN , Receptores Odorantes/genética , Atractivos Sexuales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA