Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Integr Zool ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075951

RESUMEN

Avian species diversity in Southern Africa is remarkably high, yet the mechanisms responsible for that diversity are poorly understood. While this is particularly true with respect to species endemic to the subregion, it is unclear as to how more broadly distributed African species may have colonized southern Africa. One process that may in part account for the high bird species diversity in southern Africa is a "species pump" model, wherein the region was repeatedly colonized by lineages from areas further north: a pattern related to climate cycling and the eastern African arid corridor. Once occupying southern Africa, with its many varied biomes, it is possible that climate cycling further affected lineages by generating genetic diversity in multiple refugia, a pattern recently shown for several southern African bird species. Here, we used mtDNA to address these questions in a widespread, sedentary habitat generalist bird species, the familiar chat (Oenanthe familiaris). The phylogenetic structure suggests a north-to-south colonization pattern, supporting the "species pump" model. Haplotype diversity was partitioned into two distinct clusters: southern Africa and Malawi (East Africa). Southern African haplotypes were not geographically partitioned, and we hypothesize that this pattern has arisen because this species is a habitat generalist, and as such resilient to habitat-altering climate perturbations. Based on our phylogenetic results, we discuss the validity of currently recognized subspecies.

2.
Nature ; 603(7900): 290-296, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35197631

RESUMEN

Multiple lines of genetic and archaeological evidence suggest that there were major demographic changes in the terminal Late Pleistocene epoch and early Holocene epoch of sub-Saharan Africa1-4. Inferences about this period are challenging to make because demographic shifts in the past 5,000 years have obscured the structures of more ancient populations3,5. Here we present genome-wide ancient DNA data for six individuals from eastern and south-central Africa spanning the past approximately 18,000 years (doubling the time depth of sub-Saharan African ancient DNA), increase the data quality for 15 previously published ancient individuals and analyse these alongside data from 13 other published ancient individuals. The ancestry of the individuals in our study area can be modelled as a geographically structured mixture of three highly divergent source populations, probably reflecting Pleistocene interactions around 80-20 thousand years ago, including deeply diverged eastern and southern African lineages, plus a previously unappreciated ubiquitous distribution of ancestry that occurs in highest proportion today in central African rainforest hunter-gatherers. Once established, this structure remained highly stable, with limited long-range gene flow. These results provide a new line of genetic evidence in support of hypotheses that have emerged from archaeological analyses but remain contested, suggesting increasing regionalization at the end of the Pleistocene epoch.


Asunto(s)
Población Negra , ADN Antiguo , Genética de Población , África del Sur del Sahara , Arqueología , Población Negra/genética , Población Negra/historia , ADN Antiguo/análisis , Flujo Génico/genética , Genoma Humano/genética , Historia Antigua , Humanos
3.
Sci Adv ; 7(19)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952528

RESUMEN

Modern Homo sapiens engage in substantial ecosystem modification, but it is difficult to detect the origins or early consequences of these behaviors. Archaeological, geochronological, geomorphological, and paleoenvironmental data from northern Malawi document a changing relationship between forager presence, ecosystem organization, and alluvial fan formation in the Late Pleistocene. Dense concentrations of Middle Stone Age artifacts and alluvial fan systems formed after ca. 92 thousand years ago, within a paleoecological context with no analog in the preceding half-million-year record. Archaeological data and principal coordinates analysis indicate that early anthropogenic fire relaxed seasonal constraints on ignitions, influencing vegetation composition and erosion. This operated in tandem with climate-driven changes in precipitation to culminate in an ecological transition to an early, pre-agricultural anthropogenic landscape.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA