Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Mol Metab ; 89: 102035, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39304062

RESUMEN

OBJECTIVE: CD73 (ecto-5'-nucleotidase, NT5E), a cell-surface enzyme converting 5'-AMP to adenosine, is crucial for cancer progression. However, its role in the tumorigenesis process remains mostly obscure. We aimed to demonstrate CD73's role in breast cancer (BC) tumorigenesis through metabolic rewiring of fatty acid metabolism, a process recently indicated to be regulated by BC major prognostic markers, hormone receptors (HR) for estrogen (ER), and progesterone (PR). METHODS: A murine model of chemically induced mammary gland tumorigenesis was applied to analyze CD73 knock-out (KO)-induced changes at the transcriptome (RNA-seq), proteome (IHC, WB), and lipidome (GC-EI-MS) levels. CD73 KO-induced changes were correlated with scRNA-seq and bulk RNA-seq data for human breast tissues and BCs from public collections and confirmed at the proteome level with IHC or WB analysis of BC tissue microarrays and cell lines. RESULTS: CD73 KO delayed the onset of HR/PR-negative mammary tumors in a murine model. This delay correlated with increased expression of genes related to biosynthesis and ß-oxidation of fatty acids (FAs) in the CD73 KO group at the initiation stage. STRING analysis based on RNA-seq data indicated an interplay between CD73 KO, up-regulated expression of PR-coding gene, and DEGs involved in FA metabolism, with PPARγ, a main regulator of FA synthesis, as a main connective node. In epithelial cells of mammary glands, PPARγ expression correlated with CD73 at the RNA level. With cancer progression, CD73 KO increased the levels of PUFAn3/6 (polyunsaturated omega 3/6 FAs), known ligands of PPARγ and target for lipid peroxidation, which may lead to oxidative DNA damage. It correlated with the downregulation of genes involved in cellular stress response (Mlh1, Gsta3), PR-or CD73-dependent changes in the intracellular ROS levels and expression or activation of proteins involved in DNA repair or oxidative stress response in mammary tumor or human BC cell lines, increased tumor mutational burden (TMB) and genomic instability markers in CD73 low HR-negative human BCs, and the prolonged onset of tumors in the CD73 KO HR/PR-negative group. CONCLUSIONS: CD73 has a significant role in tumorigenesis driving the reprogramming of lipid metabolism through the regulatory loop with PR and PPARγ in epithelial cells of mammary glands. Low CD73 expression/CD73 KO might enhance mutational burden by disrupting this regulatory loop, delaying the onset of HR-negative tumors. Our results support combining therapy targeting the CD73-adenosine axis and tumor lipidome against HR-negative tumors, especially at their earliest developmental stage.

2.
J Pers Med ; 14(9)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39338168

RESUMEN

Increased activity of transforming growth factor-beta (TGF-ß) is a key factor mediating kidney impairment in diabetes. Glomerular podocytes, the crucial component of the renal filter, are a direct target of TGF-ß action, resulting in irreversible cell loss and progression of chronic kidney disease (CKD). Urolithin A (UA) is a member of the family of polyphenol metabolites produced by gut microbiota from ellagitannins and ellagic acid-rich foods. The broad spectrum of biological activities of UA makes it a promising candidate for the treatment of podocyte disorders. In this in vitro study, we investigated whether UA influences the changes exerted in podocytes by TGF-ß and high glucose. Following a 7-day incubation in normal (NG, 5.5 mM) or high (HG, 25 mM) glucose, the cells were treated with UA and/or TGF-ß1 for 24 h. HG and TGF-ß1, each independent and in concert reduced expression of nephrin, increased podocyte motility, and up-regulated expression of b3 integrin and fibronectin. These typical-for-epithelial-to-mesenchymal transition (EMT) effects were inhibited by UA in both HG and NG conditions. UA also reduced the typically elevated HG expression of TGF-ß receptors and activation of the TGF-ß signal transducer Smad2. Our results indicate that in podocytes cultured in conditions mimicking the diabetic milieu, UA inhibits and reverses changes underlying podocytopenia in diabetic kidneys. Hence, UA should be considered as a potential therapeutic agent in podocytopathies.

3.
Front Cell Infect Microbiol ; 14: 1394038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774628

RESUMEN

Introduction: Recent years, microbiota-associated aspects have been analysed in multiple disorders regarding cancers. Existing evidence pints that gut microorganisms might take part in tumour origin and therapy efficacy. Nevertheless, to date, data on faecal metabolomics in cancer patients is still strongly limited. Therefore, we aimed to analyse gut untargeted metabolome in gastrointestinal cancer patients (i.e., gastric and colorectal cancer). Patients and methods: There were 12 patients with either gastric (n=4) or colorectal cancer (n=8) enrolled and 8 analysed (n=4 each). Stool samples were collected prior to anti-cancer treatments. Untargeted metabolomics analyses were conducted by means of mass spectrometry. Results: A plethora of metabolites in cancer patients we analysed were noted, with higher homogenity in case of gastric cancer patients. We found that the level of Deoxyguanosine,m/z 266.091,[M-H]-, Uridine,m/z 245.075,[M+H]+, Deoxyguanosine,m/z 268.104,[M]+, 3-Indoleacetic acid,m/z 176.07,[M+H]+, Indoxyl,m/z 132.031,[M-H]-, L-Phenylalanine,m/z 164.073,[M-H]-, L-Methionine,m/z 150.058,[M+NH4]+, was significantly higher in colorectal cancer patients and Ethyl hydrogen malonate,m/z 133.031,[M+H]+ in gastric cancer. Conclusion: The overall insights into untargeted metabolomics showed that most often higher levels of analysed metabolites were detected in colorectal cancer patients compared to gastric cancer patients. The link between gut metabolome and both local and distal metastasis might exist, however it requires confirmation in further multi-centre studies regarding larger sample size.


Asunto(s)
Neoplasias Colorrectales , Heces , Microbioma Gastrointestinal , Metaboloma , Metabolómica , Neoplasias Gástricas , Humanos , Neoplasias Colorrectales/metabolismo , Metabolómica/métodos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiología , Masculino , Heces/química , Heces/microbiología , Femenino , Persona de Mediana Edad , Anciano , Espectrometría de Masas
4.
Front Cell Infect Microbiol ; 14: 1329057, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481661

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) exhibits significant genetic heterogeneity and primarily concerns the oral cavity and oropharynx. These cancers occur more frequently in men with a 5-year survival rate below 50%. Major risk factors include human papilloma virus (HPV) (notably type 16), Epstein-Barr virus, tobacco, alcohol, and poor oral hygiene with approximately 4.5% of global cancers linked to HPV. Notably, differences in the microbiome between healthy individuals and patients with head and neck cancers (HNCs) have been identified. Recent studies highlight the significance of certain oral microbes in risk assessment and the potential of the microbiome as a biomarker for HNCs. Additionally, role of the microbiome in metastasis has been acknowledged. Treatment for HNCs includes local methods, such as surgery and radiotherapy, and systemic approaches, such as immunotherapy. Numerous side effects accompany these treatments. Emerging research suggests the beneficial role of preoperative immunonutrition and probiotics in patient outcomes, emphasizing the influence of the microbiome on treatment efficacy. This review explores the reciprocal effects of HNC treatment and the gut microbiome using radiotherapy, brachytherapy, surgery, immunotherapy, and chemotherapy.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias de Cabeza y Cuello , Microbiota , Infecciones por Papillomavirus , Masculino , Humanos , Herpesvirus Humano 4 , Neoplasias de Cabeza y Cuello/terapia
5.
Molecules ; 29(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338372

RESUMEN

The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO• donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.


Asunto(s)
Benzamidas , Disfunción Cognitiva , Maleato de Dizocilpina , Compuestos Nitrosos , Pirazoles , Piridinas , Sulfonamidas , Ratones , Animales , Maleato de Dizocilpina/farmacología , Óxido Nítrico/farmacología , Escopolamina/farmacología , Óxido Nítrico Sintasa de Tipo III , Disfunción Cognitiva/tratamiento farmacológico , Encéfalo , Regulación Alostérica
6.
Am J Physiol Heart Circ Physiol ; 326(5): H1065-H1079, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38391314

RESUMEN

Athlete's heart is generally regarded as a physiological adaptation to regular training, with specific morphological and functional alterations in the cardiovascular system. Development of the noninvasive imaging techniques over the past several years enabled better assessment of cardiac remodeling in athletes, which may eventually mimic certain pathological conditions with the potential for sudden cardiac death, or disease progression. The current literature provides a compelling overview of the available methods that target the interrelation of prolonged exercise with cardiac structure and function. However, this data stems from scientific studies that included mostly male athletes. Despite the growing participation of females in competitive sport meetings, little is known about the long-term cardiac effects of repetitive training in this population. There are several factors-biochemical, physiological and psychological, that determine sex-dependent cardiac response. Herein, the aim of this review was to compare cardiac adaptation to endurance exercise in male and female athletes with the use of electrocardiographic, echocardiographic, and biochemical examination, to determine the sex-specific phenotypes, and to improve the healthcare providers' awareness of cardiac remodeling in athletes. Finally, we discuss the possible exercise-induced alternations that should arouse suspicion of pathology and be further evaluated.


Asunto(s)
Corazón , Remodelación Ventricular , Humanos , Masculino , Femenino , Corazón/diagnóstico por imagen , Corazón/fisiología , Electrocardiografía , Ecocardiografía , Atletas , Adaptación Fisiológica/fisiología
7.
Mol Neurobiol ; 61(1): 148-166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37589832

RESUMEN

Estrogens function in numerous physiological processes including controlling brain cell growth and differentiation. 2-Methoxestradiol (2-ME2), a 17ß-estradiol (E2) metabolite, is known for its anticancer effects as observed both in vivo and in vitro. 2-ME2 affects all actively dividing cells, including neurons. The study aimed to determine whether 2-ME2 is a potentially cancer-protective or rather neurodegenerative agent in a specific tissue culture model as well as a clinical setup. In this study, 2-ME2 activity was determined in a Parkinson's disease (PD) in vitro model based on the neuroblastoma SH-SY5Y cell line. The obtained results suggest that 2-ME2 generates nitro-oxidative stress and controls heat shock proteins (HSP), resulting in DNA strand breakage and apoptosis. On the one hand, it may affect intensely dividing cells preventing cancer development; however, on the other hand, this kind of activity within the central nervous system may promote neurodegenerative diseases like PD. Thus, the translational value of 2-ME2's neurotoxic activity in a PD in vitro model was also investigated. LC-MS/MS technique was used to evaluate estrogens and their derivatives, namely, hydroxy and methoxyestrogens, in PD patients' blood, whereas the stopped-flow method was used to assess hydrogen peroxide (H2O2) levels. Methoxyestrogens and H2O2 levels were increased in patients' blood as compared to control subjects, but hydoxyestrogens were simultaneously decreased. From the above, we suggest that the determination of plasma levels of methoxyestrogens and H2O2 may be a novel PD biomarker. The presented research is the subject of the pending patent application "The use of hydrogen peroxide and 17ß-estradiol and its metabolites as biomarkers in the diagnosis of neurodegenerative diseases," no. P.441360.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , 2-Metoxiestradiol , Peróxido de Hidrógeno , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cromatografía Liquida , Neuroblastoma/metabolismo , Espectrometría de Masas en Tándem , Estrés Oxidativo , Estradiol , Apoptosis , Estrógenos , Línea Celular Tumoral
8.
Artículo en Inglés | MEDLINE | ID: mdl-37926944

RESUMEN

The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.


Asunto(s)
Diabetes Mellitus , Productos Finales de Glicación Avanzada , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Reacción de Maillard , Diabetes Mellitus/metabolismo , Inflamación
9.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139334

RESUMEN

As a substitution for hormone replacement therapy, many breast cancer patients use black cohosh (BC) extracts in combination with doxorubicin (DOX)-based chemotherapy. In this study, we evaluated the viability and survival of BC- and DOX-treated MCF-7 cells. A preclinical model of MCF-7 xenografts was used to determine the influence of BC and DOX administration on tumor growth and metabolism. The number of apoptotic cells after incubation with both DOX and BC was significantly increased (~100%) compared to the control. Treatment with DOX altered the potential of MCF-7 cells to form colonies; however, coincubation with BC did not affect this process. In vivo, PET-CT imaging showed that combined treatment of DOX and BC induced a significant reduction in both metabolic activity (29%) and angiogenesis (32%). Both DOX and BC treatments inhibited tumor growth by 20% and 12%, respectively, and combined by 57%, vs. control. We successfully demonstrated that BC increases cytotoxic effects of DOX, resulting in a significant reduction in tumor size. Further studies regarding drug transport and tumor growth biomarkers are necessary to establish the underlying mechanism and potential clinical use of BC in breast cancer patients.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Cimicifuga , Humanos , Femenino , Tomografía Computarizada por Tomografía de Emisión de Positrones , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Antineoplásicos/uso terapéutico , Células MCF-7 , Línea Celular Tumoral
10.
Gut Microbes ; 15(2): 2281017, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37985748

RESUMEN

Intestinal bacteria are equipped with an enzyme apparatus that is involved in the active biotransformation of xenobiotics, including drugs. Pharmacomicrobiomics, a new area of pharmacology, analyses interactions between bacteria and xenobiotics. However, there is another side to the coin. Pharmacotherapeutic agents can significantly modify the microbiota, which consequently affects their efficacy. In this review, we comprehensively gathered scientific evidence on the interplay between anticancer therapies and gut microbes. We also underlined how such interactions might impact the host response to a given therapy. We discuss the possibility of modulating the gut microbiota to increase the effectiveness/decrease the incidence of adverse events during tumor therapy. The anticipation of the future brings new evidence that gut microbiota is a target of interest to increase the efficacy of therapy.


Asunto(s)
Antineoplásicos , Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Microbioma Gastrointestinal/fisiología , Medicina de Precisión , Neoplasias/microbiología , Antineoplásicos/efectos adversos , Microbiota/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA