RESUMEN
Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of human antibody repertoires. However, a comprehensive overview of environmental and genetic determinants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic, environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range of microbial and environmental antigens in 1,443 participants from a population cohort. We detected individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires. Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors (including age, cell counts, sex, smoking behavior, and allergies, among others) and particular antibody-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by both genetics and environmental exposures and highlight specific signatures of distinct phenotypes and genotypes.
Asunto(s)
Anticuerpos , Bacteriófagos , Humanos , Antígenos , Epítopos/genética , PéptidosRESUMEN
Inflammatory bowel diseases (IBDs), e.g., Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases. A comprehensive overview of an IBD-specific antibody epitope repertoire is, however, lacking. Using high-throughput phage-display immunoprecipitation sequencing (PhIP-Seq), we identified antibodies against 344,000 antimicrobial, immune, and food antigens in 497 individuals with IBD compared with 1,326 controls. IBD was characterized by 373 differentially abundant antibody responses (202 overrepresented and 171 underrepresented), with 17% shared by both IBDs, 55% unique to CD, and 28% unique to UC. Antibody reactivities against bacterial flagellins dominated in CD and were associated with ileal involvement, fibrostenotic disease, and anti-Saccharomyces cerevisiae antibody positivity, but not with fecal microbiome composition. Antibody epitope repertoires accurately discriminated CD from controls (area under the curve [AUC] = 0.89), and similar discrimination was achieved when using only ten antibodies (AUC = 0.87). Individuals with IBD thus show a distinct antibody repertoire against selected peptides, allowing clinical stratification and discovery of immunological targets.
Asunto(s)
Bacteriófagos , Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Anticuerpos , EpítoposRESUMEN
Although food-directed immunoglobulin E (IgE) has been studied in the context of allergies, the prevalence and magnitude of IgG responses against dietary antigens are incompletely characterized in the general population. Here, we measured IgG binding against food and environmental antigens obtained from allergen databases and the immune epitope database (IEDB), represented in a phage displayed library of 58,233 peptides. By profiling blood samples of a large cohort representing the average adult Israeli population (n = 1,003), we showed that many food antigens elicited systemic IgG in up to 50% of individuals. Dietary intake of specific food protein correlated with antibody binding, suggesting that diet can shape the IgG epitope repertoire. Our work documents abundant systemic IgG responses against food antigens and provides a reference map of the exact immunogenic epitopes on a population scale, laying the foundation to unravel the role of food- and environmental antigen-directed antibody binding in disease contexts.
Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Humanos , Inmunoglobulina G , Formación de Anticuerpos , Epítopos , Proteínas en la DietaRESUMEN
BIPS (Build Phage ImmunoPrecipitation Sequencing library) is a software that converts a list of proteins into a custom DNA oligonucleotide library for the PhIP-Seq system. The tool creates constant-length oligonucleotides with internal barcodes, while maintaining the original length of the peptide. This allows using large libraries, of hundreds of thousands of oligonucleotides, while saving on the costs of sequencing and maintaining the accuracy of oligonucleotide reads identification. BIPS is available under GNU public license from: https://github.com/kalkairis/BuildPhIPSeqLibrary.
Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Biblioteca de Genes , Inmunoprecipitación , Programas Informáticos , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with an unclear etiology and pathogenesis. Both an involvement of the immune system and gut microbiota dysbiosis have been implicated in its pathophysiology. However, potential interactions between adaptive immune responses and the microbiota in ME/CFS have been incompletely characterized. Here, we profiled antibody responses of patients with severe ME/CFS and healthy controls against microbiota and viral antigens represented as a phage-displayed 244,000 variant library. Patients with severe ME/CFS exhibited distinct serum antibody epitope repertoires against flagellins of Lachnospiraceae bacteria. Training machine learning algorithms on this antibody-binding data demonstrated that immune responses against gut microbiota represent a unique layer of information beyond standard blood tests, providing improved molecular diagnostics for ME/CFS. Together, our results point toward an involvement of the microbiota-immune axis in ME/CFS and lay the foundation for comparative studies with inflammatory bowel diseases and illnesses characterized by long-term fatigue symptoms, including post-COVID-19 syndrome.
Asunto(s)
Formación de Anticuerpos , Síndrome de Fatiga Crónica , Flagelina , Microbioma Gastrointestinal , Epítopos , Síndrome de Fatiga Crónica/diagnóstico , Síndrome de Fatiga Crónica/inmunología , Flagelina/inmunología , HumanosRESUMEN
The spillover of animal coronaviruses (aCoVs) to humans has caused SARS, MERS, and COVID-19. While antibody responses displaying cross-reactivity between SARS-CoV-2 and seasonal/common cold human coronaviruses (hCoVs) have been reported, potential cross-reactivity with aCoVs and the diagnostic implications are incompletely understood. Here, we probed for antibody binding against all seven hCoVs and 49 aCoVs represented as 12,924 peptides within a phage-displayed antigen library. Antibody repertoires of 269 recovered COVID-19 patients showed distinct changes compared to 260 unexposed pre-pandemic controls, not limited to binding of SARS-CoV-2 antigens but including binding to antigens from hCoVs and aCoVs with shared motifs to SARS-CoV-2. We isolated broadly reactive monoclonal antibodies from recovered COVID-19 patients that bind a shared motif of SARS-CoV-2, hCoV-OC43, hCoV-HKU1, and several aCoVs, demonstrating that interspecies cross-reactivity can be mediated by a single immunoglobulin. Employing antibody binding data against the entire CoV antigen library allowed accurate discrimination of recovered COVID-19 patients from unexposed individuals by machine learning. Leaving out SARS-CoV-2 antigens and relying solely on antibody binding to other hCoVs and aCoVs achieved equally accurate detection of SARS-CoV-2 infection. The ability to detect SARS-CoV-2 infection without knowledge of its unique antigens solely from cross-reactive antibody responses against other hCoVs and aCoVs suggests a potential diagnostic strategy for the early stage of future pandemics. Creating regularly updated antigen libraries representing the animal coronavirome can provide the basis for a serological assay already poised to identify infected individuals following a future zoonotic transmission event.
Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Infecciones por Coronavirus/inmunología , Coronavirus/inmunología , Biblioteca de Péptidos , Adolescente , Adulto , Anciano , Animales , Infecciones por Coronavirus/diagnóstico , Reacciones Cruzadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , ZoonosisRESUMEN
Serum antibodies can recognize both pathogens and commensal gut microbiota. However, our current understanding of antibody repertoires is largely based on DNA sequencing of the corresponding B-cell receptor genes, and actual bacterial antigen targets remain incompletely characterized. Here we have profiled the serum antibody responses of 997 healthy individuals against 244,000 rationally selected peptide antigens derived from gut microbiota and pathogenic and probiotic bacteria. Leveraging phage immunoprecipitation sequencing (PhIP-Seq) based on phage-displayed synthetic oligo libraries, we detect a wide breadth of individual-specific as well as shared antibody responses against microbiota that associate with age and gender. We also demonstrate that these antibody epitope repertoires are more longitudinally stable than gut microbiome species abundances. Serum samples of more than 200 individuals collected five years apart could be accurately matched and could serve as an immunologic fingerprint. Overall, our results suggest that systemic antibody responses provide a non-redundant layer of information about microbiota beyond gut microbial species composition.
Asunto(s)
Epítopos/inmunología , Inmunoglobulinas/inmunología , Microbiota , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Aprendizaje Automático , Masculino , Metagenómica , Persona de Mediana Edad , Biblioteca de Péptidos , Adulto JovenRESUMEN
Background: Variability of response to medication is a well-known phenomenon, determined by both environmental and genetic factors. Understanding the heritable component of the response to medication is of great interest but challenging due to several reasons, including small study cohorts and computational limitations. Methods: Here, we study the heritability of variation in the glycaemic response to metformin, first-line therapeutic agent for type 2 diabetes (T2D), by leveraging 18 years of electronic health records (EHR) data from Israel's largest healthcare service provider, consisting of over five million patients of diverse ethnicities and socio-economic background. Our cohort consists of 80,788 T2D patients treated with metformin, with an accumulated number of 1,611,591 HbA1C measurements and 4,581,097 metformin prescriptions. We estimate the explained variance of glycated hemoglobin (HbA1c%) reduction due to inheritance by constructing a six-generation population-size pedigree from national registries and linking it to medical health records. Results: Using Linear Mixed Model-based framework, a common-practice method for heritability estimation, we calculate a heritability measure of h 2 = 12.6 % (95% CI, 6.1 % - 19.1 % ) for absolute reduction of HbA1c% after metformin treatment in the entire cohort, h 2 = 21.0 % (95% CI, 7.8 % - 34.4 % ) for males and h 2 = 22.9 % (95% CI, 10.0 % - 35.7 % ) in females. Results remain unchanged after adjusting for pre-treatment HbA1c%, and in proportional reduction of HbA1c%. Conclusions: To the best of our knowledge, our work is the first to estimate heritability of drug response using solely EHR data combining a pedigree-based kinship matrix. We demonstrate that while response to metformin treatment has a heritable component, most of the variation is likely due to other factors, further motivating non-genetic analyses aimed at unraveling metformin's action mechanism.
RESUMEN
Human gut microbiome composition is shaped by multiple factors but the relative contribution of host genetics remains elusive. Here we examine genotype and microbiome data from 1,046 healthy individuals with several distinct ancestral origins who share a relatively common environment, and demonstrate that the gut microbiome is not significantly associated with genetic ancestry, and that host genetics have a minor role in determining microbiome composition. We show that, by contrast, there are significant similarities in the compositions of the microbiomes of genetically unrelated individuals who share a household, and that over 20% of the inter-person microbiome variability is associated with factors related to diet, drugs and anthropometric measurements. We further demonstrate that microbiome data significantly improve the prediction accuracy for many human traits, such as glucose and obesity measures, compared to models that use only host genetic and environmental data. These results suggest that microbiome alterations aimed at improving clinical outcomes may be carried out across diverse genetic backgrounds.