Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Pharmaceuticals (Basel) ; 17(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38931341

RESUMEN

Liver cancer ranks among the most prevalent malignancies globally and stands as a leading cause of cancer-related mortality. Numerous isothiazolone derivatives and analogues have been synthesized and investigated for their potential as anticancer agents; however, limited data exist regarding their efficacy against liver cancer. In the present study, two nitrophenyl-isothiazolones, the 5-benzoyl-2-(4-nitrophenyl)isothiazol-3(2H)-one (IsoA) and the 2-(4-nitrophenyl)isothiazol-3(2H)-one (IsoB), were preliminarily investigated for their cytotoxicity against hepatoma human (Huh7) cells as a liver cancer model and Immortalized Human Hepatocytes (IHHs) as a model of non-cancerous hepatocytes. IsoB, derived from IsoA after removal of the benzoyl moiety, demonstrated the highest cytotoxic effect against Huh7 cells with CC50 values of 19.3 µΜ at 24 h, 16.4 µΜ at 48 h, and 16.2 µΜ at 72 h of incubation, respectively. IsoB also exhibited selective toxicity against the liver cancerous Huh7 cells compared to IHH cells, reinforcing its role as a potent and selective anticancer agent. Remarkably, the cytotoxicity of IsoB was higher when compared with the standard chemotherapeutical agent 5-fluorouracil (5-FU), which also failed to exhibit higher toxicity against the liver cancerous cell lines. Moreover, IsoB-treated Huh7 cells presented a noteworthy reduction in mitochondrial membrane potential (ΔΨm) after 48 and 72 h, while mitochondrial superoxide levels showed an increase after 24 h of incubation. The molecular mechanism of the IsoB cytotoxic effect was also investigated using RT-qPCR, revealing an apoptosis-mediated cell death along with tumor suppressor TP53 overexpression and key-oncogene MYCN downregulation.

2.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119602, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778471

RESUMEN

The enzyme L-Dopa Decarboxylase (DDC) synthesizes the catecholamine dopamine and the indolamine serotonin. Apart from its role in the brain as a neurotransmitter biosynthetic enzyme, DDC has been detected also in the liver and other peripheral organs, where it is implicated in cell proliferation, apoptosis, and host-virus interactions. Dengue virus (DENV) suppresses DDC expression at the later stages of infection, during which DENV also inhibits autophagosome-lysosome fusion. As dopamine affects autophagy in neuronal cells, we investigated the possible association of DDC with autophagy in human hepatocytes and examined whether DDC mediates the relationship between DENV infection and autophagy. We performed DDC silencing/overexpression and evaluated autophagic markers upon induction of autophagy, or suppression of autophagosome-lysosome fusion. Our results showed that DDC favored the autophagic process, at least in part, through its biosynthetic function, while knockdown of DDC or inhibition of DDC enzymatic activity prevented autophagy completion. In turn, autophagy induction upregulated DDC, while autophagy reduction by chemical or genetic (ATG14L knockout) ways caused the opposite effect. This study also implicated DDC with the cellular energetic status, as DDC silencing reduced the oxidative phosphorylation activity of the cell. We also report that upon DDC silencing, the repressive effect of DENV on the completion of autophagy was enhanced, and the inhibition of autolysosome formation did not exert an additive effect on viral proliferation. These data unravel a novel role of DDC in the autophagic process and suggest that DENV downregulates DDC expression to inhibit the completion of autophagy, reinforcing the importance of this protein in viral infections.


Asunto(s)
Autofagia , Virus del Dengue , Hepatocitos , Humanos , Virus del Dengue/metabolismo , Dopa-Decarboxilasa/genética , Dopa-Decarboxilasa/metabolismo , Dopamina/metabolismo , Hepatocitos/patología , Hepatocitos/virología
3.
Viruses ; 14(3)2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35336971

RESUMEN

Previously, the association between the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) and Dengue virus (DV) replication was demonstrated in liver cells and was found to be mediated at least by the interaction between DDC and phosphoinositide 3-kinase (PI3K). Here, we show that biogenic amines production and uptake impede DV replication in hepatocytes and monocytes, while the virus reduces catecholamine biosynthesis, metabolism, and transport. To examine how catecholamine biosynthesis/metabolism influences DV, first, we verified the role of DDC by altering DDC expression. DDC silencing enhanced virus replication, but not translation, attenuated the negative effect of DDC substrates on the virus and reduced the infection related cell death. Then, the role of the downstream steps of the catecholamine biosynthesis/metabolism was analyzed by chemical inhibition of the respective enzymes, application of their substrates and/or their products; moreover, reserpine, the inhibitor of the vesicular monoamine transporter 2 (VMAT2), was used to examine the role of uptake/storage of catecholamines on DV. Apart from the role of each enzyme/transporter, these studies revealed that the dopamine uptake, and not the dopamine-signaling, is responsible for the negative effect on DV. Accordingly, all treatments expected to enhance the accumulation of catecholamines in the cell cytosol suppressed DV replication. This was verified by the use of chemical inducers of catecholamine biosynthesis. Last, the cellular redox alterations due to catecholamine oxidation were not related with the inhibition of DV replication. In turn, DV apart from its negative impact on DDC, inhibits tyrosine hydroxylase, dopamine beta-hydroxylase, monoamine oxidase, and VMAT2 expression.


Asunto(s)
Dengue , Dopamina , Catecolaminas/metabolismo , Dopamina/metabolismo , Hepatocitos/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Replicación Viral
4.
Cells ; 12(1)2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36611805

RESUMEN

The SARS-CoV-2 infection was previously associated with the expression of the dopamine biosynthetic enzyme L-Dopa decarboxylase (DDC). Specifically, a negative correlation was detected between DDC mRNA and SARS-CoV-2 RNA levels in in vitro infected epithelial cells and the nasopharyngeal tissue of COVID-19 patients with mild/no symptoms. However, DDC, among other genes related to both DDC expression and SARS-CoV-2-infection (ACE2, dACE2, EPO), was upregulated in these patients, possibly attributed to an orchestrated host antiviral response. Herein, by comparing DDC expression in the nasopharyngeal swab samples of severe/critical to mild COVID-19 cases, we showed a 20 mean-fold reduction, highlighting the importance of the expression of this gene as a potential marker of COVID-19 severity. Moreover, we identified an association of SARS-CoV-2 infection with the expression of key catecholamine biosynthesis/metabolism-related genes, in whole blood samples from hospitalized patients and in cultured cells. Specifically, viral infection downregulated the biosynthetic part of the dopamine pathway (reduction in DDC expression up to 7.5 mean-fold), while enhanced the catabolizing part (increase in monoamine oxidases A and B expression up to 15 and 10 mean-fold, respectively) in vivo, irrespectively of the presence of comorbidities. In accordance, dopamine levels in the sera of severe cases were reduced (up to 3.8 mean-fold). Additionally, a moderate positive correlation between DDC and MAOA mRNA levels (r = 0.527, p < 00001) in the blood was identified upon SARS-CoV-2-infection. These observations were consistent to the gene expression data from SARS-CoV-2-infected Vero E6 and A549 epithelial cells. Furthermore, L-Dopa or dopamine treatment of infected cells attenuated the virus-derived cytopathic effect by 55% and 59%, respectively. The SARS-CoV-2 mediated suppression of dopamine biosynthesis in cell culture was, at least in part, attributed to hypoxia-like conditions triggered by viral infection. These findings suggest that L-Dopa/dopamine intake may have a preventive or therapeutic value for COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Catecolaminas , Dopamina , Levodopa/metabolismo , ARN Viral/metabolismo , Vías Biosintéticas , ARN Mensajero/metabolismo
5.
Viruses ; 13(11)2021 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-34834946

RESUMEN

A bidirectional negative relationship between Hepatitis C virus (HCV) replication and gene expression of the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) was previously shown in the liver and attributed at least to an association of DDC with phosphatidylinositol 3-kinase (PI3K). Here, we report that the biosynthesis and uptake of catecholamines restrict HCV replication in hepatocytes, while HCV has developed ways to reduce catecholamine production. By employing gene silencing, chemical inhibition or induction of the catecholamine biosynthetic and metabolic enzymes and transporters, and by applying the substrates or the products of the respective enzymes, we unravel the role of the different steps of the pathway in viral infection. We also provide evidence that the effect of catecholamines on HCV is strongly related with oxidative stress that is generated by their autoxidation in the cytosol, while antioxidants or treatments that lower cytosolic catecholamine levels positively affect the virus. To counteract the effect of catecholamines, HCV, apart from the already reported effects on DDC, causes the down-regulation of tyrosine hydroxylase that encodes the rate-limiting enzyme of catecholamine biosynthesis and suppresses dopamine beta-hydroxylase mRNA and protein amounts, while increasing the catecholamine degradation enzyme monoamine oxidase. Moreover, the NS4B viral protein is implicated in the effect of HCV on the ratio of the ~50 kDa DDC monomer and a ~120 kDa DDC complex, while the NS5A protein has a negative effect on total DDC protein levels.


Asunto(s)
Vías Biosintéticas , Catecolaminas/biosíntesis , Hepacivirus/fisiología , Replicación Viral , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Línea Celular , Dopamina beta-Hidroxilasa/metabolismo , Hepatitis C/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Monoaminooxidasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
6.
PLoS One ; 16(6): e0253458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34185793

RESUMEN

L-Dopa decarboxylase (DDC) is the most significantly co-expressed gene with ACE2, which encodes for the SARS-CoV-2 receptor angiotensin-converting enzyme 2 and the interferon-inducible truncated isoform dACE2. Our group previously showed the importance of DDC in viral infections. We hereby aimed to investigate DDC expression in COVID-19 patients and cultured SARS-CoV-2-infected cells, also in association with ACE2 and dACE2. We concurrently evaluated the expression of the viral infection- and interferon-stimulated gene ISG56 and the immune-modulatory, hypoxia-regulated gene EPO. Viral load and mRNA levels of DDC, ACE2, dACE2, ISG56 and EPO were quantified by RT-qPCR in nasopharyngeal swab samples from COVID-19 patients, showing no or mild symptoms, and from non-infected individuals. Samples from influenza-infected patients were analyzed in comparison. SARS-CoV-2-mediated effects in host gene expression were validated in cultured virus-permissive epithelial cells. We found substantially higher gene expression of DDC in COVID-19 patients (7.6-fold; p = 1.2e-13) but not in influenza-infected ones, compared to non-infected subjects. dACE2 was more elevated (2.9-fold; p = 1.02e-16) than ACE2 (1.7-fold; p = 0.0005) in SARS-CoV-2-infected individuals. ISG56 (2.5-fold; p = 3.01e-6) and EPO (2.6-fold; p = 2.1e-13) were also increased. Detected differences were not attributed to enrichment of specific cell populations in nasopharyngeal tissue. While SARS-CoV-2 virus load was positively associated with ACE2 expression (r≥0.8, p<0.001), it negatively correlated with DDC, dACE2 (r≤-0.7, p<0.001) and EPO (r≤-0.5, p<0.05). Moreover, a statistically significant correlation between DDC and dACE2 expression was observed in nasopharyngeal swab and whole blood samples of both COVID-19 and non-infected individuals (r≥0.7). In VeroE6 cells, SARS-CoV-2 negatively affected DDC, ACE2, dACE2 and EPO mRNA levels, and induced cell death, while ISG56 was enhanced at early hours post-infection. Thus, the regulation of DDC, dACE2 and EPO expression in the SARS-CoV-2-infected nasopharyngeal tissue is possibly related with an orchestrated antiviral response of the infected host as the virus suppresses these genes to favor its propagation.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , Dopa-Decarboxilasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Anciano , Enzima Convertidora de Angiotensina 2/genética , Área Bajo la Curva , Descarboxilasas de Aminoácido-L-Aromático , COVID-19/virología , Dopa-Decarboxilasa/genética , Regulación hacia Abajo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Eritropoyetina/genética , Eritropoyetina/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nasofaringe/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Curva ROC , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Regulación hacia Arriba , Carga Viral
7.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32972019

RESUMEN

Hepatitis C virus (HCV) genome translation is initiated via an internal ribosome entry site (IRES) embedded in the 5'-untranslated region (5'UTR). We have earlier shown that the conserved RNA stem-loops (SL) SL47 and SL87 of the HCV core-encoding region are important for viral genome translation in cell culture and in vivo. Moreover, we have reported that an open reading frame overlapping the core gene in the +1 frame (core+1 ORF) encodes alternative translation products, including a protein initiated at the internal AUG codons 85/87 of this frame (nt 597-599 and 603-605), downstream of SL87, which is designated core+1/Short (core+1/S). Here, we provide evidence for SL47 and SL87 possessing a novel cis-acting element that directs the internal translation initiation of core+1/S. Firstly, using a bicistronic dual luciferase reporter system and RNA-transfection experiments, we found that nucleotides 344-596 of the HCV genotype-1a and -2a genomes support translation initiation at the core+1 frame AUG codons 85/87, when present in the sense but not the opposite orientation. Secondly, site-directed mutagenesis combined with an analysis of ribosome-HCV RNA association elucidated that SL47 and SL87 are essential for this alternative translation mechanism. Finally, experiments using cells transfected with JFH1 replicons or infected with virus-like particles showed that core+1/S expression is independent from the 5'UTR IRES and does not utilize the polyprotein initiation codon, but it requires intact SL47 and SL87 structures. Thus, SL47 and SL87, apart from their role in viral polyprotein translation, are necessary elements for mediating the internal translation initiation of the alternative core+1/S ORF.


Asunto(s)
Hepacivirus/metabolismo , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , ARN Viral/metabolismo , Proteínas del Núcleo Viral/biosíntesis , Línea Celular Tumoral , Codón Iniciador , Hepacivirus/genética , Humanos , ARN Viral/genética , Proteínas del Núcleo Viral/genética
8.
J Exp Bot ; 71(10): 3110-3125, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32016431

RESUMEN

Monosaccharide transporters (MSTs) represent key components of the carbon transport and partitioning mechanisms in plants, mediating the cell-to-cell and long-distance distribution of a wide variety of monosaccharides. In this study, we performed a thorough structural, molecular, and physiological characterization of the monosaccharide transporter gene family in the model legume Medicago truncatula. The complete set of MST family members was identified with a novel bioinformatic approach. Prolonged darkness was used as a test condition to identify the relevant transcriptomic and metabolic responses combining MST transcript profiling and metabolomic analysis. Our results suggest that MSTs play a pivotal role in the efficient partitioning and utilization of sugars, and possibly in the mechanisms of carbon remobilization in nodules upon photosynthate-limiting conditions, as nodules are forced to acquire a new role as a source of both C and N.


Asunto(s)
Medicago truncatula , Carbono/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Transporte de Membrana , Monosacáridos , Fijación del Nitrógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiosis
9.
Cells ; 8(8)2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387309

RESUMEN

l-dopa decarboxylase (DDC) that catalyzes the biosynthesis of bioactive amines, such as dopamine and serotonin, is expressed in the nervous system and peripheral tissues, including the liver, where its physiological role remains unknown. Recently, we reported a physical and functional interaction of DDC with the major signaling regulator phosphoinosite-3-kinase (PI3K). Here, we provide compelling evidence for the involvement of DDC in viral infections. Studying dengue (DENV) and hepatitis C (HCV) virus infection in hepatocytes and HCV replication in liver samples of infected patients, we observed a negative association between DDC and viral replication. Specifically, replication of both viruses reduced the levels of DDC mRNA and the ~120 kDa SDS-resistant DDC immunoreactive functional complex, concomitant with a PI3K-dependent accumulation of the ~50 kDa DDC monomer. Moreover, viral infection inhibited PI3K-DDC association, while DDC did not colocalize with viral replication sites. DDC overexpression suppressed DENV and HCV RNA replication, while DDC enzymatic inhibition enhanced viral replication and infectivity and affected DENV-induced cell death. Consistently, we observed an inverse correlation between DDC mRNA and HCV RNA levels in liver biopsies from chronically infected patients. These data reveal a novel relationship between DDC and Flaviviridae replication cycle and the role of PI3K in this process.


Asunto(s)
Dengue/metabolismo , Dopa-Decarboxilasa/metabolismo , Hepatitis C/metabolismo , Hígado/enzimología , Replicación Viral , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Dengue/virología , Virus del Dengue/patogenicidad , Virus del Dengue/fisiología , Dopa-Decarboxilasa/genética , Hepacivirus/patogenicidad , Hepacivirus/fisiología , Hepatitis C/virología , Humanos , Hígado/virología , Fosfatidilinositol 3-Quinasas/metabolismo , Células Vero
10.
Cells ; 7(12)2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30513781

RESUMEN

Low oxygen tension exerts a profound effect on the replication of several DNA and RNA viruses. In vitro propagation of Dengue virus (DENV) has been conventionally studied under atmospheric oxygen levels despite that in vivo, the tissue microenvironment is hypoxic. Here, we compared the efficiency of DENV replication in liver cells, monocytes, and epithelial cells under hypoxic and normoxic conditions, investigated the ability of DENV to induce a hypoxia response and metabolic reprogramming and determined the underlying molecular mechanism. In DENV-infected cells, hypoxia had no effect on virus entry and RNA translation, but enhanced RNA replication. Overexpression and silencing approaches as well as chemical inhibition and energy substrate exchanging experiments showed that hypoxia-mediated enhancement of DENV replication depends on the activation of the key metabolic regulators hypoxia-inducible factors 1α/2α (HIF-1α/2α) and the serine/threonine kinase AKT. Enhanced RNA replication correlates directly with an increase in anaerobic glycolysis producing elevated ATP levels. Additionally, DENV activates HIF and anaerobic glycolysis markers. Finally, reactive oxygen species were shown to contribute, at least in part through HIF, both to the hypoxia-mediated increase of DENV replication and to virus-induced hypoxic reprogramming. These suggest that DENV manipulates hypoxia response and oxygen-dependent metabolic reprogramming for efficient viral replication.

11.
Infect Genet Evol ; 26: 113-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24815730

RESUMEN

Translation initiation of the Hepatitis C virus (HCV) genome is driven by an internal ribosome entry site (IRES), located within the 5' non-coding region. Several studies have suggested that different cellular non canonical proteins or viral proteins can regulate the HCV IRES activity. However, the role of the viral proteins on HCV translation remains controversial. In this report, we confirmed previous studies showing that NS5A down-regulates IRES activity in HepG2 but not in Huh7 cells suggesting that the NS5A effect on HCV IRES is cell-type dependent. Additionally, we provide strong evidence that activated PKR up-regulates the IRES activity while silencing of endogenous PKR had the opposite effect. Furthermore, we present data indicating that the NS5A-mediated inhibitory effect on IRES-dependent translation could be linked with the PKR inactivation. Finally, we show that NS5A from GBV-C but not from GBV-B down-regulates HCV IRES activity in the absence or the presence of PKR over expression. Notably, HCV and GBV-C but not GBV-B NS5A contains a previously identified PKR interacting protein domain.


Asunto(s)
Regiones no Traducidas 5' , Hepacivirus/genética , Hepacivirus/metabolismo , Biosíntesis de Proteínas , Proteínas no Estructurales Virales/metabolismo , eIF-2 Quinasa/metabolismo , Secuencia de Aminoácidos , Activación Enzimática , Virus GB-C/genética , Virus GB-C/metabolismo , Expresión Génica , Regulación Viral de la Expresión Génica , Células Hep G2 , Hepatitis C/genética , Hepatitis C/metabolismo , Hepatitis C/virología , Humanos , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Proteínas no Estructurales Virales/química , eIF-2 Quinasa/genética
12.
Mol Membr Biol ; 28(1): 1-13, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21219252

RESUMEN

Polyols are compounds that play various physiological roles in plants. Here we present the identification of four cDNA clones of the model legume Lotus japonicus, encoding proteins of the monosaccharide transporter-like (MST) superfamily that share significant homology with previously characterized polyol transporters (PLTs). One of the transporters, named LjPLT4, was characterized functionally after expression in yeast. Transport assays revealed that LjPLT4 is a xylitol-specific H(+)-symporter (K (m), 0.34 mM). In contrast to the previously characterized homologues, LjPLT4 was unable to transport other polyols, including mannitol, sorbitol, myo-inositol and galactitol, or any of the monosaccharides tested. Interestingly, some monosaccharides, including fructose and xylose, inhibited xylitol uptake, although no significant uptake of these compounds was detected in the LjPLT4 transformed yeast cells, suggesting interactions with the xylitol binding site. Subcellular localization of LjPLT4-eYFP fusions expressed in Arabidopsis leaf epidermal cells indicated that LjPLT4 is localized in the plasma membrane. Real-time RT-PCR revealed that LjPLT4 is expressed in all major plant organs, with maximum transcript accumulation in leaves correlating with maximum xylitol levels there, as determined by GC-MS. Thus, LjPLT4 is the first plasma membrane xylitol-specific H(+)-symporter to be characterized in plants.


Asunto(s)
Lotus/genética , Simportadores/genética , Xilitol/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Clonación Molecular , ADN Complementario/genética , Lotus/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo
13.
PLoS One ; 5(5): e10575, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20485506

RESUMEN

Hepatitis C virus is a poor inducer of interferon (IFN), although its structured viral RNA can bind the RNA helicase RIG-I, and activate the IFN-induction pathway. Low IFN induction has been attributed to HCV NS3/4A protease-mediated cleavage of the mitochondria-adapter MAVS. Here, we have investigated the early events of IFN induction upon HCV infection, using the cell-cultured HCV JFH1 strain and the new HCV-permissive hepatoma-derived Huh7.25.CD81 cell subclone. These cells depend on ectopic expression of the RIG-I ubiquitinating enzyme TRIM25 to induce IFN through the RIG-I/MAVS pathway. We observed induction of IFN during the first 12 hrs of HCV infection, after which a decline occurred which was more abrupt at the protein than at the RNA level, revealing a novel HCV-mediated control of IFN induction at the level of translation. The cellular protein kinase PKR is an important regulator of translation, through the phosphorylation of its substrate the eIF2alpha initiation factor. A comparison of the expression of luciferase placed under the control of an eIF2alpha-dependent (IRES(EMCV)) or independent (IRES(HCV)) RNA showed a specific HCV-mediated inhibition of eIF2alpha-dependent translation. We demonstrated that HCV infection triggers the phosphorylation of both PKR and eIF2alpha at 12 and 15 hrs post-infection. PKR silencing, as well as treatment with PKR pharmacological inhibitors, restored IFN induction in JFH1-infected cells, at least until 18 hrs post-infection, at which time a decrease in IFN expression could be attributed to NS3/4A-mediated MAVS cleavage. Importantly, both PKR silencing and PKR inhibitors led to inhibition of HCV yields in cells that express functional RIG-I/MAVS. In conclusion, here we provide the first evidence that HCV uses PKR to restrain its ability to induce IFN through the RIG-I/MAVS pathway. This opens up new possibilities to assay PKR chemical inhibitors for their potential to boost innate immunity in HCV infection.


Asunto(s)
Hepacivirus/inmunología , Interferones/biosíntesis , eIF-2 Quinasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Hepacivirus/efectos de los fármacos , Hepatitis C/inmunología , Hepatitis C/virología , Humanos , Cinética , Modelos Inmunológicos , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Especificidad por Sustrato/efectos de los fármacos , Factores de Tiempo , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores
14.
Plant Physiol ; 150(3): 1160-73, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19403733

RESUMEN

The cis/trans isomerization of the peptide bond preceding proline is an intrinsically slow process, although important in many biological processes in both prokaryotes and eukaryotes. In vivo, this isomerization is catalyzed by peptidyl-prolyl cis/trans-isomerases (PPIases). Here, we present the molecular and biochemical characterization of parvulin-type PPIase family members of the model legume Lotus japonicus, annotated as LjPar1, LjPar2, and LjPar3. Although LjPar1 and LjPar2 were found to be homologous to PIN1 (Protein Interacting with NIMA)-type parvulins and hPar14 from human, respectively, LjPar3 represents a novel multidomain parvulin, apparently present only in plants, that contains an active carboxyl-terminal sulfurtransferase domain. All Lotus parvulins were heterologously expressed and purified from Escherichia coli, and purified protein verification measurements used a liquid chromatography-mass spectrometry-based proteomic method. The biochemical characterization of the recombinant Lotus parvulins revealed that they possess PPIase activity toward synthetic tetrapeptides, although they exhibited different substrate specificities depending on the amino acid amino terminal to proline. These differences were also studied in a structural context using molecular modeling of the encoded polypeptides. Real-time reverse transcription-polymerase chain reaction revealed that the three parvulin genes of Lotus are ubiquitously expressed in all plant organs. LjPar1 was found to be up-regulated during the later stages of nodule development. Subcellular localization of LjPar-enhanced Yellow Fluorescence Protein (eYFP) fusions expressed in Arabidopsis (Arabidopsis thaliana) leaf epidermal cells revealed that LjPar1- and LjPar2-eYFP fusions were localized in the cytoplasm and in the nucleus, in contrast to LjPar3-eYFP, which was clearly localized in plastids. Divergent substrate specificities, expression profiles, and subcellular localization indicate that plant parvulin-type PPIases are probably involved in a wide range of biochemical and physiological processes.


Asunto(s)
Lotus/enzimología , Isomerasa de Peptidilprolil/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Cromatografía Liquida , Clonación Molecular , ADN Complementario/química , Electroforesis en Gel de Poliacrilamida , Proteínas de Escherichia coli , Lotus/genética , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estructura Terciaria de Proteína , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
15.
J Gen Virol ; 89(Pt 1): 222-231, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18089746

RESUMEN

The hepatitis C virus (HCV) genome possesses an open reading frame (ORF) overlapping the core gene at +1 nucleotide (core+1 ORF). Initial in vitro studies suggested that the core+1 ORF is translated by a ribosomal -2/+1 frameshift mechanism during elongation of the viral polyprotein. Recent studies, however, based on transfection of mammalian cells with reporter constructs have shown that translation of the core+1 ORF is mediated from internal core+1 codons. To resolve the apparent discrepancies associated with the mechanism of core+1 translation, we examined the expression of the HCV-1 and HCV-1a (H) core+1 ORF in a cytoplasmic transcription system based on Huh-7/T7 cells that constitutively synthesize the T7 RNA polymerase in comparison to that in Huh-7 cells. We showed that the efficiency of both the -2/+1 and -1/+2 frameshift events operating at the HCV-1 core codons 8-11 is significantly enhanced in the Huh-7/T7 cytoplasmic transcription system and is dependent on the presence of the consecutive adenine (A) residues within core codons 8-11. In contrast, internal translation initiation at core+1 codons 85/87 occurs in both the nuclear and cytoplasmic transcription systems and is not repressed by the ribosomal frameshifting event. Finally, although core+1 codons 85/87 is the most efficient site for internal initiation of core+1 translation, it may not be unique, as additional internal core+1 codon(s) appear to drive translation at low levels.


Asunto(s)
Núcleo Celular/virología , Citoplasma/virología , Regulación Viral de la Expresión Génica , Hepacivirus/genética , Sistemas de Lectura Abierta , Proteínas del Núcleo Viral/genética , Secuencia de Aminoácidos , Secuencia de Bases , Carcinoma Hepatocelular/virología , Línea Celular , Codón/genética , Humanos , Neoplasias Hepáticas/virología , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Plásmidos , Regiones Promotoras Genéticas , Transfección , Proteínas del Núcleo Viral/química
16.
J Gen Virol ; 86(Pt 4): 1015-1025, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15784895

RESUMEN

Translation of the hepatitis C virus (HCV) polyprotein is mediated by an internal ribosome entry site (IRES) that is located mainly within the 5' non-translated region of the viral genome. In this study, the effect of the HCV non-structural 5A (NS5A) protein on the HCV IRES-dependent translation was investigated by using a transient transfection system. Three different cell lines (HepG2, WRL-68 and BHK-21) were co-transfected with a plasmid vector containing a bicistronic transcript carrying the chloramphenicol acetyltransferase (CAT) and the firefly luciferase genes separated by the HCV IRES sequences, and an expression vector producing the NS5A protein. Here, it was shown that the HCV NS5A protein inhibited HCV IRES-dependent translation in a dose-dependent manner. In contrast, NS5A had no detectable effect on cap-dependent translation of the upstream gene (CAT) nor on translation from another viral IRES. Further analysis using deleted forms of the NS5A protein revealed that a region of about 120 aa located just upstream of the nuclear localization signal of the protein is critical for this suppression. Overall, these results suggest that HCV NS5A protein negatively modulates the HCV IRES activity in a specific manner.


Asunto(s)
Regiones no Traducidas 5' , Regulación hacia Abajo , Hepacivirus/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular Tumoral , Cricetinae , Regulación Viral de la Expresión Génica , Hepacivirus/genética , Humanos , Plásmidos , Transfección , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
17.
FEBS Lett ; 511(1-3): 79-84, 2002 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-11821053

RESUMEN

The hepatitis C virus internal ribosome entry site (IRES) binds directly to the 40S ribosomal subunit via domains III/IV while domain II induces conformational changes on the ribosome which have been implicated in the decoding process. Here, we performed an extensive mutational study within the apical portion of domain II in order to address the functional role of this region on translation. Our results showed that the conservation of most nucleotides in this region was only partially related to the IRES function. Notwithstanding, however, selected single point mutations within the apical loop had a deleterious effect on IRES activity.


Asunto(s)
Hepacivirus/genética , Mutación/genética , ARN Viral/genética , Ribosomas/metabolismo , Secuencia de Bases , Sitios de Unión , Línea Celular , Mutagénesis Sitio-Dirigida/genética , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Viral/química , ARN Viral/metabolismo , Mapeo Restrictivo , Relación Estructura-Actividad , Transcripción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA