Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Circ Res ; 134(12): 1752-1766, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843295

RESUMEN

Heart failure (HF) is characterized by a progressive decline in cardiac function and represents one of the largest health burdens worldwide. Clinically, 2 major types of HF are distinguished based on the left ventricular ejection fraction (EF): HF with reduced EF and HF with preserved EF. While both types share several risk factors and features of adverse cardiac remodeling, unique hallmarks beyond ejection fraction that distinguish these etiologies also exist. These differences may explain the fact that approved therapies for HF with reduced EF are largely ineffective in patients suffering from HF with preserved EF. Improving our understanding of the distinct cellular and molecular mechanisms is crucial for the development of better treatment strategies. This article reviews the knowledge of the immunologic mechanisms underlying HF with reduced and preserved EF and discusses how the different immune profiles elicited may identify attractive therapeutic targets for these conditions. We review the literature on the reported mechanisms of adverse cardiac remodeling in HF with reduced and preserved EF, as well as the immune mechanisms involved. We discuss how the knowledge gained from preclinical models of the complex syndrome of HF as well as from clinical data obtained from patients may translate to a better understanding of HF and result in specific treatments for these conditions in humans.


Asunto(s)
Insuficiencia Cardíaca , Volumen Sistólico , Remodelación Ventricular , Humanos , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/inmunología , Animales , Miocarditis/fisiopatología , Miocarditis/inmunología , Función Ventricular Izquierda , Miocardio/patología , Miocardio/metabolismo , Miocardio/inmunología
2.
Nat Rev Cardiol ; 21(7): 443-462, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38279046

RESUMEN

Immune checkpoint molecules are physiological regulators of the adaptive immune response. Immune checkpoint inhibitors (ICIs), such as monoclonal antibodies targeting programmed cell death protein 1 or cytotoxic T lymphocyte-associated protein 4, have revolutionized cancer treatment and their clinical use is increasing. However, ICIs can cause various immune-related adverse events, including acute and chronic cardiotoxicity. Of these cardiovascular complications, ICI-induced acute fulminant myocarditis is the most studied, although emerging clinical and preclinical data are uncovering the importance of other ICI-related chronic cardiovascular complications, such as accelerated atherosclerosis and non-myocarditis-related heart failure. These complications could be more difficult to diagnose, given that they might only be present alongside other comorbidities. The occurrence of these complications suggests a potential role of immune checkpoint molecules in maintaining cardiovascular homeostasis, and disruption of physiological immune checkpoint signalling might thus lead to cardiac pathologies, including heart failure. Although inflammation is a long-known contributor to the development of heart failure, the therapeutic targeting of pro-inflammatory pathways has not been successful thus far. The increasingly recognized role of immune checkpoint molecules in the failing heart highlights their potential use as immunotherapeutic targets for heart failure. In this Review, we summarize the available data on ICI-induced cardiac dysfunction and heart failure, and discuss how immune checkpoint signalling is altered in the failing heart. Furthermore, we describe how pharmacological targeting of immune checkpoints could be used to treat heart failure.


Asunto(s)
Insuficiencia Cardíaca , Inhibidores de Puntos de Control Inmunológico , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/inmunología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Animales , Transducción de Señal , Cardiotoxicidad
3.
Circulation ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38126199

RESUMEN

BACKGROUND: Metabolic distress is often associated with heart failure with preserved ejection fraction (HFpEF) and represents a therapeutic challenge. Metabolism-induced systemic inflammation links comorbidities with HFpEF. How metabolic changes affect myocardial inflammation in the context of HFpEF is not known. METHODS: We found that ApoE knockout mice fed a Western diet recapitulate many features of HFpEF. Single-cell RNA sequencing was used for expression analysis of CD45+ cardiac cells to evaluate the involvement of inflammation in diastolic dysfunction. We focused bioinformatics analysis on macrophages, obtaining high-resolution identification of subsets of these cells in the heart, enabling us to study the outcomes of metabolic distress on the cardiac macrophage infiltrate and to identify a macrophage-to-cardiomyocyte regulatory axis. To test whether a clinically relevant sodium glucose cotransporter-2 inhibitor could ameliorate the cardiac immune infiltrate profile in our model, mice were randomized to receive the sodium glucose cotransporter-2 inhibitor dapagliflozin or vehicle for 8 weeks. RESULTS: ApoE knockout mice fed a Western diet presented with reduced diastolic function, reduced exercise tolerance, and increased pulmonary congestion associated with cardiac lipid overload and reduced polyunsaturated fatty acids. The main immune cell types infiltrating the heart included 4 subpopulations of resident and monocyte-derived macrophages, determining a proinflammatory profile exclusively in ApoE knockout- Western diet mice. Lipid overload had a direct effect on inflammatory gene activation in macrophages, mediated through endoplasmic reticulum stress pathways. Investigation of the macrophage-to-cardiomyocyte regulatory axis revealed the potential effects on cardiomyocytes of multiple inflammatory cytokines secreted by macrophages, affecting pathways such as hypertrophy, fibrosis, and autophagy. Finally, we describe an anti-inflammatory effect of sodium glucose cotransporter-2 inhibitor in this model. CONCLUSIONS: Using single-cell RNA sequencing , in a model of diastolic dysfunction driven by hyperlipidemia, we have determined the effects of metabolic distress on cardiac inflammatory cells, in particular on macrophages, and suggest sodium glucose cotransporter-2 inhibitors as potential therapeutic agents for the targeting of a specific phenotype of HFpEF.

5.
Echocardiography ; 40(6): 464-474, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100745

RESUMEN

BACKGROUND: Cardiovascular sequelae may occur in patients recovered from coronavirus disease 2019 (COVID-19). Recent studies have detected a considerable incidence of subclinical myocardial dysfunction-assessed with speckle-tracking echocardiography-and of long-COVID symptoms in these patients. This study aimed to define the long-term prognostic role of subclinical myocardial dysfunction and long-COVID condition in patients recovered from COVID-19 pneumonia. METHODS: We prospectively followed up 110 patients hospitalized at our institution due to COVID-19 pneumonia in April 2020 and then recovered from SARS-CoV-2 infection. A 7-month clinical and echocardiographic evaluation was performed, followed by a 21-month clinical follow-up. The primary outcome was major adverse cardiovascular events (MACE), a composite of myocardial infarction, stroke, heart failure hospitalization, and all-cause mortality. RESULTS: A subclinical myocardial dysfunction-defined as an impairment of left ventricular global longitudinal strain (≥-18%)-was identified at a 7-month follow-up in 37 patients (34%), was associated with an increased risk of long-term MACE with a good discriminative power (area under the curve: .73) and resulted in a strong independent predictor of extended MACE in multivariate regression analyses. Long-COVID condition was not associated with a worse long-term prognosis, instead. CONCLUSIONS: In patients recovered from COVID-19 pneumonia, a subclinical myocardial dysfunction is present in one-third of the whole population at 7-month follow-up and is associated with a higher risk of MACE at long-term follow-up. Speckle-tracking echocardiography is a promising tool to optimize the risk-stratification in patients recovered from COVID-19 pneumonia, while the definition of a long-COVID condition has no prognostic relevance.


Asunto(s)
COVID-19 , Disfunción Ventricular Izquierda , Humanos , Factores de Riesgo , Síndrome Post Agudo de COVID-19 , COVID-19/complicaciones , Valor Predictivo de las Pruebas , SARS-CoV-2 , Pronóstico , Disfunción Ventricular Izquierda/complicaciones
8.
Nat Cardiovasc Res ; 1(3): 211-222, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35755006

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is increasing in prevalence worldwide, already accounting for at least half of all heart failure (HF). As most patients with HFpEF are obese with metabolic syndrome, metabolic stress has been implicated in syndrome pathogenesis. Recently, compelling evidence for bidirectional crosstalk between metabolic stress and chronic inflammation has emerged, and alterations in systemic and cardiac immune responses are held to participate in HFpEF pathophysiology. Indeed, based on both preclinical and clinical evidence, comorbidity-driven systemic inflammation, coupled with metabolic stress, have been implicated together in HFpEF pathogenesis. As metabolic alterations impact immune function(s) in HFpEF, major changes in immune cell metabolism are also recognized in HFpEF and in HFpEF-predisposing conditions. Both arms of immunity - innate and adaptive - are implicated in the cardiomyocyte response in HFpEF. Indeed, we submit that crosstalk among adipose tissue, the immune system, and the heart represents a critical component of HFpEF pathobiology. Here, we review recent evidence in support of immunometabolic mechanisms as drivers of HFpEF pathogenesis, discuss pivotal biological mechanisms underlying the syndrome, and highlight questions requiring additional inquiry.

9.
J Crohns Colitis ; 16(9): 1461-1474, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-35358301

RESUMEN

BACKGROUND AND AIMS: Invariant natural killer T [iNKT] cells perform pleiotropic functions in different tissues by secreting a vast array of pro-inflammatory and cytotoxic molecules. However, the presence and function of human intestinal iNKT cells capable of secreting immunomodulatory molecules such as IL-10 has never been reported so far. Here we describe for the first time the presence of IL10-producing iNKT cells [NKT10 cells] in the intestinal lamina propria of healthy individuals and of Crohn's disease [CD] patients. METHODS: Frequency and phenotype of NKT10 cells were analysed ex vivo from intestinal specimens of Crohn's disease [n = 17] and controls [n = 7]. Stable CD-derived intestinal NKT10 cell lines were used to perform in vitro suppression assays and co-cultures with patient-derived mucosa-associated microbiota. Experimental colitis models were performed by adoptive cell transfer of splenic naïve CD4+ T cells in the presence or absence of IL10-sufficient or -deficient iNKT cells. In vivo induction of NKT10 cells was performed by administration of short chain fatty acids [SCFA] by oral gavage. RESULTS: Patient-derived intestinal NKT10 cells demonstrated suppressive capabilities towards pathogenic CD4+ T cells. The presence of increased proportions of mucosal NKT10 cells associated with better clinical outcomes in CD patients. Moreover, an intestinal microbial community enriched in SCFA-producing bacteria sustained the production of IL10 by iNKT cells. Finally, IL10-deficient iNKT cells failed to control the pathogenic activity of adoptively transferred CD4+ T cells in an experimental colitis model. CONCLUSIONS: These results describe an unprecedentd IL10-mediated immunoregulatory role of intestinal iNKT cells in controlling the pathogenic functions of mucosal T helper subsets and in maintaining the intestinal immune homeostasis.


Asunto(s)
Colitis , Enfermedad de Crohn , Células T Asesinas Naturales , Linfocitos T CD4-Positivos/patología , Enfermedad de Crohn/patología , Humanos , Interleucina-10/metabolismo , Mucosa Intestinal/patología , Células T Asesinas Naturales/metabolismo
10.
Circulation ; 144(15): 1227-1240, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34372689

RESUMEN

BACKGROUND: Inflammation contributes to the pathogenesis of heart failure, but there is limited understanding of inflammation's potential benefits. Inflammatory cells secrete MYDGF (myeloid-derived growth factor) to promote tissue repair after acute myocardial infarction. We hypothesized that MYDGF has a role in cardiac adaptation to persistent pressure overload. METHODS: We defined the cellular sources and function of MYDGF in wild-type (WT), Mydgf-deficient (Mydgf-/-), and Mydgf bone marrow-chimeric or bone marrow-conditional transgenic mice with pressure overload-induced heart failure after transverse aortic constriction surgery. We measured MYDGF plasma concentrations by targeted liquid chromatography-mass spectrometry. We identified MYDGF signaling targets by phosphoproteomics and substrate-based kinase activity inference. We recorded Ca2+ transients and sarcomere contractions in isolated cardiomyocytes. Additionally, we explored the therapeutic potential of recombinant MYDGF. RESULTS: MYDGF protein abundance increased in the left ventricular myocardium and in blood plasma of pressure-overloaded mice. Patients with severe aortic stenosis also had elevated MYDGF plasma concentrations, which declined after transcatheter aortic valve implantation. Monocytes and macrophages emerged as the main MYDGF sources in the pressure-overloaded murine heart. While Mydgf-/- mice had no apparent phenotype at baseline, they developed more severe left ventricular hypertrophy and contractile dysfunction during pressure overload than WT mice. Conversely, conditional transgenic overexpression of MYDGF in bone marrow-derived inflammatory cells attenuated pressure overload-induced hypertrophy and dysfunction. Mechanistically, MYDGF inhibited G protein-coupled receptor agonist-induced hypertrophy and augmented SERCA2a (sarco/endoplasmic reticulum Ca2+-ATPase 2a) expression in cultured neonatal rat ventricular cardiomyocytes by enhancing PIM1 (Pim-1 proto-oncogene, serine/threonine kinase) expression and activity. Along this line, cardiomyocytes from pressure-overloaded Mydgf-/- mice displayed reduced PIM1 and SERCA2a expression, greater hypertrophy, and impaired Ca2+ cycling and sarcomere function compared with cardiomyocytes from pressure-overloaded WT mice. Transplanting Mydgf-/- mice with WT bone marrow cells augmented cardiac PIM1 and SERCA2a levels and ameliorated pressure overload-induced hypertrophy and dysfunction. Pressure-overloaded Mydgf-/- mice were similarly rescued by adenoviral Serca2a gene transfer. Treating pressure-overloaded WT mice subcutaneously with recombinant MYDGF enhanced SERCA2a expression, attenuated left ventricular hypertrophy and dysfunction, and improved survival. CONCLUSIONS: These findings establish a MYDGF-based adaptive crosstalk between inflammatory cells and cardiomyocytes that protects against pressure overload-induced heart failure.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/fisiología , Insuficiencia Cardíaca/terapia , Interleucinas/uso terapéutico , Miocitos Cardíacos/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Interleucinas/farmacología , Ratones
11.
Cancers (Basel) ; 13(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34359818

RESUMEN

Lung cancer burden is increasing, with 2 million deaths/year worldwide. Current limitations in early detection impede lung cancer diagnosis when the disease is still localized and thus more curable by surgery or multimodality treatment. Liquid biopsy is emerging as an important tool for lung cancer early detection and for monitoring therapy response. Here, we reviewed recent advances in liquid biopsy for early diagnosis of lung cancer. We summarized DNA- or RNA-based biomarkers, proteins, autoantibodies circulating in the blood, as well as circulating tumor cells (CTCs), and compared the most promising studies in terms of biomarkers prediction performance. While we observed an overall good performance for the proposed biomarkers, we noticed some critical aspects which may complicate the successful translation of these biomarkers into the clinical setting. We, therefore, proposed a roadmap for successful development of lung cancer biomarkers during the discovery, prioritization, and clinical validation phase. The integration of innovative minimally invasive biomarkers in screening programs is highly demanded to augment lung cancer early detection.

12.
Front Immunol ; 12: 609406, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746953

RESUMEN

Background: Chronic low-grade inflammation and alterations in innate and adaptive immunity were reported in Type 2 diabetes (T2D). Here, we investigated the abundance and activation of T cells in the bone marrow (BM) of patients with T2D. We then verified the human data in a murine model and tested if the activation of T cells can be rescued by treating mice with abatacept, an immunomodulatory drug employed for the treatment of rheumatoid arthritis. Clinical evidence indicated abatacept can slow the decline in beta-cell function. Methods: A cohort of 24 patients (12 with T2D) undergoing hip replacement surgery was enrolled in the study. Flow cytometry and cytokine analyses were performed on BM leftovers from surgery. We next compared the immune profile of db/db and control wt/db mice. In an additional study, db/db mice were randomized to receive abatacept or vehicle for 4 weeks, with endpoints being immune cell profile, indices of insulin sensitivity, and heart performance. Results: Patients with T2D showed increased frequencies of BM CD4+ (2.8-fold, p = 0.001) and CD8+ T cells (1.8-fold, p = 0.01), with the upregulation of the activation marker CD69 and the homing receptor CCR7 in CD4+ (1.64-fold, p = 0.003 and 2.27-fold, p = 0.01, respectively) and CD8+ fractions (1.79-fold, p = 0.05 and 1.69-fold, p = 0.02, respectively). These differences were confirmed in a multivariable regression model. CCL19 (CCR7 receptor ligand) and CXCL10/11 (CXCR3 receptor ligands), implicated in T-cell migration and activation, were the most differentially modulated chemokines. Studies in mice confirmed the activation of adaptive immunity in T2D. Abatacept reduced the activation of T cells and the levels of proinflammatory cytokines and improved cardiac function but not insulin sensitivity. Conclusions: Results provide proof-of-concept evidence for the activation of BM adaptive immunity in T2D. In mice, treatment with abatacept dampens the activation of adaptive immunity and protects from cardiac damage.


Asunto(s)
Inmunidad Adaptativa , Médula Ósea/inmunología , Médula Ósea/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Abatacept/farmacología , Anciano , Animales , Biomarcadores , Médula Ósea/patología , Quimopapaína/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético/efectos de los fármacos , Femenino , Expresión Génica , Humanos , Memoria Inmunológica , Inmunofenotipificación , Inmunosupresores/farmacología , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Masculino , Ratones , Persona de Mediana Edad , Receptores CCR7/genética , Receptores CCR7/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
14.
Cardiovasc Res ; 117(9): 2069-2082, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32931583

RESUMEN

AIM: Loss of immunosuppressive response supports inflammation during atherosclerosis. We tested whether adoptive cell therapy (ACT) with Tregulatory cells (Tregs), engineered to selectively migrate in the atherosclerotic plaque, would dampen the immune-inflammatory response in the arterial wall in animal models of familial hypercholesterolaemia (FH). METHODS AND RESULTS: FH patients presented a decreased Treg suppressive function associated to an increased inflammatory burden. A similar phenotype was observed in Ldlr -/- mice accompanied by a selective increased expression of the chemokine CX3CL1 in the aorta but not in other districts (lymph nodes, spleen, and liver). Treg overexpressing CX3CR1 were thus generated (CX3CR1+-Tregs) to drive Tregs selectively to the plaque. CX3CR1+-Tregs were injected (i.v.) in Ldlr -/- fed high-cholesterol diet (western type diet, WTD) for 8 weeks. CX3CR1+-Tregs were detected in the aorta, but not in other tissues, of Ldlr -/- mice 24 h after ACT, corroborating the efficacy of this approach. After 4 additional weeks of WTD, ACT with CX3CR1+-Tregs resulted in reduced plaque progression and lipid deposition, ameliorated plaque stability by increasing collagen and smooth muscle cells content, while decreasing the number of pro-inflammatory macrophages. Shotgun proteomics of the aorta showed a metabolic rewiring in CX3CR1+-Tregs treated Ldlr -/- mice compared to controls that was associated with the improvement of inflammation-resolving pathways and disease progression. CONCLUSION: ACT with vasculotropic Tregs appears as a promising strategy to selectively target immune activation in the atherosclerotic plaque.


Asunto(s)
Traslado Adoptivo , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Receptor 1 de Quimiocinas CX3C/metabolismo , Terapia Genética , Placa Aterosclerótica , Linfocitos T Reguladores/trasplante , Transducción Genética , Adulto , Animales , Enfermedades de la Aorta/inmunología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Receptor 1 de Quimiocinas CX3C/genética , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Hiperlipoproteinemia Tipo II/inmunología , Hiperlipoproteinemia Tipo II/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Estudios Prospectivos , Receptores de LDL/genética , Receptores de LDL/metabolismo , Estudios Retrospectivos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
16.
Life Sci ; 264: 118618, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141040

RESUMEN

AIMS: Obesity represents a global health problem. Excessive caloric intake promotes the release of inflammatory mediators by hypertrophic adipocytes and obesity-induced inflammation is now recognized as a risk factor for the development of several diseases, such as cardiovascular diseases, insulin resistance, type-II diabetes, liver steatosis and cancer. Since obesity causes inflammation, we tested the ability of acetylsalicylic acid (ASA), a potent anti-inflammatory drug, in counteracting this inflammatory process and in mitigating obesity-associated health complications. MAIN METHODS: Mice were fed with standard (SD) or high fat diet (HFD) for 3 months and then treated with acetylsalicylic acid for the subsequent two months. We then analyzed the metabolic and inflammatory status of their adipose and liver tissue by histological, molecular and biochemical analysis. KEY FINDINGS: Although ASA did not exert any effect on body weight, quantification of adipocyte size revealed that the drug slightly reduced adipocyte hypertrophy, however not sufficient so as to induce weight loss. Most importantly, ASA was able to improve insulin resistance. Gene expression profiles of pro- and anti-inflammatory cytokines as well as the expression of macrophage and lymphocyte markers revealed that HFD led to a marked macrophage accumulation in the adipose tissue and an increase of several pro-inflammatory cytokines, a situation almost completely reverted after ASA administration. In addition, liver steatosis caused by HFD was completely abrogated by ASA treatment. SIGNIFICANCE: ASA can efficiently ameliorate pathological conditions usually associated with obesity by inhibiting the inflammatory process occurring in the adipose tissue.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Antiinflamatorios no Esteroideos/uso terapéutico , Aspirina/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina/fisiología , Obesidad/tratamiento farmacológico , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Modelos Animales de Enfermedad , Femenino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , Resultado del Tratamiento
18.
Heart ; 106(19): 1512-1518, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32817312

RESUMEN

OBJECTIVE: Risk stratification is crucial to optimise treatment strategies in patients with COVID-19. We aimed to evaluate the impact on mortality of an early assessment of cardiac biomarkers in patients with COVID-19. METHODS: Humanitas Clinical and Research Hospital (Rozzano-Milan, Lombardy, Italy) is a tertiary centre that has been converted to the management of COVID-19. Patients with confirmed COVID-19 were entered in a dedicated database for cohort observational analyses. Outcomes were stratified according to elevated levels (ie, above the upper level of normal) of high-sensitivity cardiac troponin I (hs-TnI), B-type natriuretic peptide (BNP) or both measured within 24 hours after hospital admission. The primary outcome was all-cause mortality. RESULTS: A total of 397 consecutive patients with COVID-19 were included up to 1 April 2020. At the time of hospital admission, 208 patients (52.4%) had normal values for cardiac biomarkers, 90 (22.7%) had elevated both hs-TnI and BNP, 59 (14.9%) had elevated only BNP and 40 (10.1%) had elevated only hs-TnI. The rate of mortality was higher in patients with elevated hs-TnI (22.5%, OR 4.35, 95% CI 1.72 to 11.04), BNP (33.9%, OR 7.37, 95% CI 3.53 to 16.75) or both (55.6%, OR 18.75, 95% CI 9.32 to 37.71) as compared with those without elevated cardiac biomarkers (6.25%). A multivariate analysis identified concomitant elevation of both hs-TnI and BNP as a strong independent predictor of all-cause mortality (OR 3.24, 95% CI 1.06 to 9.93). CONCLUSIONS: An early detection of elevated hs-TnI and BNP predicts mortality in patients with COVID-19. Cardiac biomarkers should be systematically assessed in patients with COVID-19 at the time of hospital admission in order to optimise risk stratification.


Asunto(s)
Betacoronavirus , Enfermedades Cardiovasculares/epidemiología , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/mortalidad , Péptido Natriurético Encefálico/sangre , Neumonía Viral/sangre , Neumonía Viral/mortalidad , Troponina I/sangre , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19 , Infecciones por Coronavirus/complicaciones , Diagnóstico Precoz , Femenino , Hospitalización , Humanos , Italia , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/complicaciones , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Medición de Riesgo , SARS-CoV-2
19.
Front Immunol ; 11: 509, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296427

RESUMEN

The evolution of the full range of functions of regulatory T cells (Treg) coincides with the evolution of mammalian pregnancy. Accordingly, Treg function has been shown to be crucial for maternal-fetal tolerance and implantation. As reproduction is a key point of selective pressure, mammalian pregnancy may represent an evolutionary driver for the development of Treg. Yet beyond the chronological boundaries of mammalian pregnancy, several key physiological and pathological events are being gradually uncovered as involving the immunomodulating functions of Treg cells. These include autoimmunity, age-related inflammation in males and in post-menopausal females, but also oncological and cardiovascular diseases. The latter two sets of diseases collectively compose the main causes of mortality world-wide. Emerging data point to Treg-modulable effects in these diseases, in a departure from the relatively narrower perceived role of Treg as master regulators of autoimmunity. Yet recent evidence also suggests that changes in intestinal microbiota can affect the above pathological conditions. This is likely due to the finding that, whilst the presence and maintenance of intestinal microbiota requires active immune tolerance, mediated by Treg, the existence of microbiota per se profoundly affects the polarization, stability, and balance of pro- and anti-inflammatory T cell populations, including Treg and induced Treg cells. The study of these "novel," but possibly highly relevant from an ontogenesis perspective, facets of Treg function may hold great potential for our understanding of the mechanisms underlying human disease.


Asunto(s)
Autoinmunidad/inmunología , Enfermedades Cardiovasculares/inmunología , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Animales , Femenino , Humanos , Masculino , Embarazo
20.
J Clin Invest ; 130(6): 3137-3150, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32125291

RESUMEN

The molecular mechanisms responsible for the high immunosuppressive capacity of CD4+ Tregs in tumors are not well known. High-dimensional single-cell profiling of T cells from chemotherapy-naive individuals with non-small-cell lung cancer identified the transcription factor IRF4 as specifically expressed by a subset of intratumoral CD4+ effector Tregs with superior suppressive activity. In contrast to the IRF4- counterparts, IRF4+ Tregs expressed a vast array of suppressive molecules, and their presence correlated with multiple exhausted subpopulations of T cells. Integration of transcriptomic and epigenomic data revealed that IRF4, either alone or in combination with its partner BATF, directly controlled a molecular program responsible for immunosuppression in tumors. Accordingly, deletion of Irf4 exclusively in Tregs resulted in delayed tumor growth in mice while the abundance of IRF4+ Tregs correlated with poor prognosis in patients with multiple human cancers. Thus, a common mechanism underlies immunosuppression in the tumor microenvironment irrespective of the tumor type.


Asunto(s)
Diferenciación Celular/inmunología , Factores Reguladores del Interferón/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología , Anciano , Anciano de 80 o más Años , Animales , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neoplasias/patología , Linfocitos T Reguladores/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA