Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Clin Imaging ; 112: 110207, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838448

RESUMEN

PURPOSE: We created an infrastructure for no code machine learning (NML) platform for non-programming physicians to create NML model. We tested the platform by creating an NML model for classifying radiographs for the presence and absence of clavicle fractures. METHODS: Our IRB-approved retrospective study included 4135 clavicle radiographs from 2039 patients (mean age 52 ± 20 years, F:M 1022:1017) from 13 hospitals. Each patient had two-view clavicle radiographs with axial and anterior-posterior projections. The positive radiographs had either displaced or non-displaced clavicle fractures. We configured the NML platform to automatically retrieve the eligible exams using the series' unique identification from the hospital virtual network archive via web access to DICOM Objects. The platform trained a model until the validation loss plateaus. Once the testing was complete, the platform provided the receiver operating characteristics curve and confusion matrix for estimating sensitivity, specificity, and accuracy. RESULTS: The NML platform successfully retrieved 3917 radiographs (3917/4135, 94.7 %) and parsed them for creating a ML classifier with 2151 radiographs in the training, 100 radiographs for validation, and 1666 radiographs in testing datasets (772 radiographs with clavicle fracture, 894 without clavicle fracture). The network identified clavicle fracture with 90 % sensitivity, 87 % specificity, and 88 % accuracy with AUC of 0.95 (confidence interval 0.94-0.96). CONCLUSION: A NML platform can help physicians create and test machine learning models from multicenter imaging datasets such as the one in our study for classifying radiographs based on the presence of clavicle fracture.


Asunto(s)
Clavícula , Fracturas Óseas , Aprendizaje Automático , Humanos , Clavícula/lesiones , Clavícula/diagnóstico por imagen , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/clasificación , Femenino , Persona de Mediana Edad , Masculino , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto , Radiografía/métodos
3.
Eur J Radiol ; 175: 111448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574510

RESUMEN

PURPOSE: Aim of the recent study is to point out a method to optimize quality of CT scans in oncological patients with port systems. This study investigates the potential of photon counting computed tomography (PCCT) for reduction of beam hardening artifacts caused by port-implants in chest imaging by means of spectral reconstructions. METHOD: In this retrospective single-center study, 8 ROIs for 19 spectral reconstructions (polyenergetic imaging, monoenergetic reconstructions from 40 to 190 keV as well as iodine maps and virtual non contrast (VNC)) of 49 patients with pectoral port systems undergoing PCCT of the chest for staging of oncologic disease were measured. Mean values and standard deviation (SD) Hounsfield unit measurements of port-chamber associated hypo- and hyperdense artifacts, bilateral muscles and vessels has been carried out. Also, a structured assessment of artifacts and imaging findings was performed by two radiologists. RESULTS: A significant association of keV with iodine contrast as well as artifact intensity was noted (all p < 0.001). In qualitative assessment, utilization of 120 keV monoenergetic reconstructions could reduce severe and pronounced artifacts completely, as compared to lower keV reconstructions (p < 0.001). Regarding imaging findings, no significant difference between monoenergetic reconstructions was noted (all p > 0.05). In cases with very high iodine concentrations in the subclavian vein, image distortions were noted at 40 keV images (p < 0.01). CONCLUSIONS: The present study demonstrates that PCCT derived spectral reconstructions can be used in oncological imaging of the thorax to reduce port-derived beam-hardening artefacts. When evaluating image data sets within a staging, it can be particularly helpful to consider the 120 keV VMIs, in which the artefacts are comparatively low.


Asunto(s)
Artefactos , Radiografía Torácica , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Tomografía Computarizada por Rayos X/métodos , Radiografía Torácica/métodos , Estudios Retrospectivos , Adulto , Anciano de 80 o más Años , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Fotones , Reproducibilidad de los Resultados
4.
Sci Rep ; 14(1): 7154, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531923

RESUMEN

Due to the intricate relationship between the small non-coding ribonucleic acid (miRNA) sequences, the classification of miRNA species, namely Human, Gorilla, Rat, and Mouse is challenging. Previous methods are not robust and accurate. In this study, we present AtheroPoint's GeneAI 3.0, a powerful, novel, and generalized method for extracting features from the fixed patterns of purines and pyrimidines in each miRNA sequence in ensemble paradigms in machine learning (EML) and convolutional neural network (CNN)-based deep learning (EDL) frameworks. GeneAI 3.0 utilized five conventional (Entropy, Dissimilarity, Energy, Homogeneity, and Contrast), and three contemporary (Shannon entropy, Hurst exponent, Fractal dimension) features, to generate a composite feature set from given miRNA sequences which were then passed into our ML and DL classification framework. A set of 11 new classifiers was designed consisting of 5 EML and 6 EDL for binary/multiclass classification. It was benchmarked against 9 solo ML (SML), 6 solo DL (SDL), 12 hybrid DL (HDL) models, resulting in a total of 11 + 27 = 38 models were designed. Four hypotheses were formulated and validated using explainable AI (XAI) as well as reliability/statistical tests. The order of the mean performance using accuracy (ACC)/area-under-the-curve (AUC) of the 24 DL classifiers was: EDL > HDL > SDL. The mean performance of EDL models with CNN layers was superior to that without CNN layers by 0.73%/0.92%. Mean performance of EML models was superior to SML models with improvements of ACC/AUC by 6.24%/6.46%. EDL models performed significantly better than EML models, with a mean increase in ACC/AUC of 7.09%/6.96%. The GeneAI 3.0 tool produced expected XAI feature plots, and the statistical tests showed significant p-values. Ensemble models with composite features are highly effective and generalized models for effectively classifying miRNA sequences.


Asunto(s)
Aprendizaje Profundo , MicroARNs , Humanos , Animales , Ratones , Ratas , Nucleótidos , Reproducibilidad de los Resultados , Área Bajo la Curva
5.
Crit Care Explor ; 6(2): e1040, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38511125

RESUMEN

OBJECTIVES: To investigate the contribution of mechanical obstruction and pulmonary vasoconstriction to pulmonary vascular resistance (PVR) in acute pulmonary embolism (PE) in pigs. DESIGN: Controlled, animal study. SETTING: Tertiary university hospital, animal research laboratory. SUBJECTS: Female Danish slaughter pigs (n = 12, ~60 kg). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: PE was induced by infusion of autologous blood clots in pigs. CT pulmonary angiograms were performed at baseline, after PE (first experimental day [PEd0]) and the following 2 days (second experimental day [PEd1] and third experimental day [PEd2]), and clot burden quantified by a modified Qanadli Obstruction Score. Hemodynamics were evaluated with left and right heart catheterization and systemic invasive pressures each day before, under, and after treatment with the pulmonary vasodilators sildenafil (0.1 mg/kg) and oxygen (Fio2 40%). PE increased PVR (baseline vs. PEd0: 178 ± 54 vs. 526 ± 160 dynes; p < 0.0001) and obstruction score (baseline vs. PEd0: 0% vs. 45% ± 13%; p < 0.0001). PVR decreased toward baseline at day 1 (baseline vs. PEd1: 178 ± 54 vs. 219 ± 48; p = 0.16) and day 2 (baseline vs. PEd2: 178 ± 54 vs. 201 ± 50; p = 0.51). Obstruction score decreased only slightly at day 1 (PEd0 vs. PEd1: 45% ± 12% vs. 43% ± 14%; p = 0.04) and remained elevated throughout the study (PEd1 vs. PEd2: 43% ± 14% vs. 42% ± 17%; p = 0.74). Sildenafil and oxygen in combination decreased PVR at day 0 (-284 ± 154 dynes; p = 0.0064) but had no effects at day 1 (-8 ± 27 dynes; p = 0.4827) or day 2 (-18 ± 32 dynes; p = 0.0923). CONCLUSIONS: Pulmonary vasoconstriction, and not mechanical obstruction, was the predominant cause of increased PVR in acute PE in pigs. PVR rapidly declined over the first 2 days after onset despite a persistent mechanical obstruction of the pulmonary circulation from emboli. The findings suggest that treatment with pulmonary vasodilators might only be effective in the acute phase of PE thereby limiting the window for such therapy.

6.
Radiol Artif Intell ; 6(1): e220221, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38166328

RESUMEN

Purpose To determine whether saliency maps in radiology artificial intelligence (AI) are vulnerable to subtle perturbations of the input, which could lead to misleading interpretations, using prediction-saliency correlation (PSC) for evaluating the sensitivity and robustness of saliency methods. Materials and Methods In this retrospective study, locally trained deep learning models and a research prototype provided by a commercial vendor were systematically evaluated on 191 229 chest radiographs from the CheXpert dataset and 7022 MR images from a human brain tumor classification dataset. Two radiologists performed a reader study on 270 chest radiograph pairs. A model-agnostic approach for computing the PSC coefficient was used to evaluate the sensitivity and robustness of seven commonly used saliency methods. Results The saliency methods had low sensitivity (maximum PSC, 0.25; 95% CI: 0.12, 0.38) and weak robustness (maximum PSC, 0.12; 95% CI: 0.0, 0.25) on the CheXpert dataset, as demonstrated by leveraging locally trained model parameters. Further evaluation showed that the saliency maps generated from a commercial prototype could be irrelevant to the model output, without knowledge of the model specifics (area under the receiver operating characteristic curve decreased by 8.6% without affecting the saliency map). The human observer studies confirmed that it is difficult for experts to identify the perturbed images; the experts had less than 44.8% correctness. Conclusion Popular saliency methods scored low PSC values on the two datasets of perturbed chest radiographs, indicating weak sensitivity and robustness. The proposed PSC metric provides a valuable quantification tool for validating the trustworthiness of medical AI explainability. Keywords: Saliency Maps, AI Trustworthiness, Dynamic Consistency, Sensitivity, Robustness Supplemental material is available for this article. © RSNA, 2023 See also the commentary by Yanagawa and Sato in this issue.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Estudios Retrospectivos , Radiografía , Radiólogos
7.
Pediatr Radiol ; 54(3): 457-467, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37227466

RESUMEN

We established a framework for collecting radiation doses for head, chest and abdomen-pelvis computed tomography (CT) in children scanned at multiple imaging sites across Latin America with an aim towards establishing diagnostic reference levels (DRLs) and achievable doses (ADs) in pediatric CT in Latin America. Our study included 12 Latin American sites (in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Honduras and Panama) contributing data on the four most common pediatric CT examinations (non-contrast head, non-contrast chest, post-contrast chest and post-contrast abdomen-pelvis). Sites contributed data on patients' age, sex and weight, scan factors (tube current and potential), volume CT dose index (CTDIvol) and dose length product (DLP). Data were verified, leading to the exclusion of two sites with missing or incorrect data entries. We estimated overall and site-specific 50th (AD) and 75th (diagnostic reference level [DRL]) percentile CTDIvol and DLP for each CT protocol. Non-normal data were compared using the Kruskal-Wallis test. Sites contributed data from 3,934 children (1,834 females) for different CT exams (head CT 1,568/3,934, 40%; non-contrast chest CT 945/3,934, 24%; post-contrast chest CT 581/3,934, 15%; abdomen-pelvis CT 840/3,934, 21%). There were significant statistical differences in 50th and 75th percentile CTDIvol and DLP values across the participating sites (P<0.001). The 50th and 75th percentile doses for most CT protocols were substantially higher than the corresponding doses reported from the United States of America. Our study demonstrates substantial disparities and variations in pediatric CT examinations performed in multiple sites in Latin America. We will use the collected data to improve scan protocols and perform a follow-up CT study to establish DRLs and ADs based on clinical indications.


Asunto(s)
Niveles de Referencia para Diagnóstico , Tomografía Computarizada por Rayos X , Femenino , Humanos , Niño , América Latina , Dosis de Radiación , Valores de Referencia , Tomografía Computarizada por Rayos X/métodos
8.
Acad Radiol ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38087718

RESUMEN

RATIONALE AND OBJECTIVES: To assess differences in radiomics derived from semi-automatic segmentation of liver metastases for stable disease (SD), partial response (PR), and progressive disease (PD) based on RECIST1.1 and to assess if radiomics alone at baseline can predict response. MATERIALS AND METHODS: Our IRB-approved study included 203 women (mean age 54 ± 11 years) with metastatic liver disease from breast cancer. All patients underwent contrast abdomen-pelvis CT in the portal venous phase at two points: baseline (pre-treatment) and follow-up (between 3 and 12 months following treatment). Patients were subcategorized into three subgroups based on RECIST 1.1 criteria (Response Evaluation Criteria in Solid Tumors version 1.1): 66 with SD, 69 with PR, and 68 with PD on follow-up CT. The deidentified baseline and follow-up CT images were exported to the radiomics prototype. The prototype enabled semi-automatic segmentation of the target liver lesions for the extraction of first and high order radiomics. Statistical analyses with logistic regression and random forest classifiers were performed to differentiate SD from PD and PR. RESULTS: There was no significant difference between the radiomics on the baseline and follow-up CT images of patients with SD (area under the curve (AUC): 0.3). Random forest classifier differentiated patients with PR with an AUC of 0.845. The most relevant feature was the large dependence emphasis's high and low pass wavelet filter (derived gray level dependence matrix features). Random forest classifier differentiated PD with an AUC of 0.731, with the most relevant feature being the surface-to-volume ratio. There was no difference in radiomics among the three groups at baseline; therefore, a response could not be predicted. CONCLUSION: Radiomics of liver metastases with semi-automatic segmentation demonstrate differences between SD from PR and PD. SUMMARY STATEMENT: Semiautomatic segmentation and radiomics of metastatic liver disease demonstrate differences in SD from the PR and progressive metastatic on the baseline and follow-up CT. Despite substantial variations in the scanners, acquisition, and reconstruction parameters, radiomics had an AUC of 0.84-0.89 for differentiating stable hepatic metastases from decreasing and increasing metastatic disease.

9.
J Korean Med Sci ; 38(46): e395, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38013648

RESUMEN

Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Inteligencia Artificial , Factores de Riesgo
10.
Diagnostics (Basel) ; 13(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37835902

RESUMEN

Skin lesion classification plays a crucial role in dermatology, aiding in the early detection, diagnosis, and management of life-threatening malignant lesions. However, standalone transfer learning (TL) models failed to deliver optimal performance. In this study, we present an attention-enabled ensemble-based deep learning technique, a powerful, novel, and generalized method for extracting features for the classification of skin lesions. This technique holds significant promise in enhancing diagnostic accuracy by using seven pre-trained TL models for classification. Six ensemble-based DL (EBDL) models were created using stacking, softmax voting, and weighted average techniques. Furthermore, we investigated the attention mechanism as an effective paradigm and created seven attention-enabled transfer learning (aeTL) models before branching out to construct three attention-enabled ensemble-based DL (aeEBDL) models to create a reliable, adaptive, and generalized paradigm. The mean accuracy of the TL models is 95.30%, and the use of an ensemble-based paradigm increased it by 4.22%, to 99.52%. The aeTL models' performance was superior to the TL models in accuracy by 3.01%, and aeEBDL models outperformed aeTL models by 1.29%. Statistical tests show significant p-value and Kappa coefficient along with a 99.6% reliability index for the aeEBDL models. The approach is highly effective and generalized for the classification of skin lesions.

12.
Diagnostics (Basel) ; 13(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37296806

RESUMEN

BACKGROUND AND MOTIVATION: Lung computed tomography (CT) techniques are high-resolution and are well adopted in the intensive care unit (ICU) for COVID-19 disease control classification. Most artificial intelligence (AI) systems do not undergo generalization and are typically overfitted. Such trained AI systems are not practical for clinical settings and therefore do not give accurate results when executed on unseen data sets. We hypothesize that ensemble deep learning (EDL) is superior to deep transfer learning (TL) in both non-augmented and augmented frameworks. METHODOLOGY: The system consists of a cascade of quality control, ResNet-UNet-based hybrid deep learning for lung segmentation, and seven models using TL-based classification followed by five types of EDL's. To prove our hypothesis, five different kinds of data combinations (DC) were designed using a combination of two multicenter cohorts-Croatia (80 COVID) and Italy (72 COVID and 30 controls)-leading to 12,000 CT slices. As part of generalization, the system was tested on unseen data and statistically tested for reliability/stability. RESULTS: Using the K5 (80:20) cross-validation protocol on the balanced and augmented dataset, the five DC datasets improved TL mean accuracy by 3.32%, 6.56%, 12.96%, 47.1%, and 2.78%, respectively. The five EDL systems showed improvements in accuracy of 2.12%, 5.78%, 6.72%, 32.05%, and 2.40%, thus validating our hypothesis. All statistical tests proved positive for reliability and stability. CONCLUSION: EDL showed superior performance to TL systems for both (a) unbalanced and unaugmented and (b) balanced and augmented datasets for both (i) seen and (ii) unseen paradigms, validating both our hypotheses.

14.
J Appl Physiol (1985) ; 134(6): 1496-1507, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167261

RESUMEN

Pulmonary perfusion has been poorly characterized in acute respiratory distress syndrome (ARDS). Optimizing protocols to measure pulmonary blood flow (PBF) via dynamic contrast-enhanced (DCE) computed tomography (CT) could improve understanding of how ARDS alters pulmonary perfusion. In this study, comparative evaluations of injection protocols and tracer-kinetic analysis models were performed based on DCE-CT data measured in ventilated pigs with and without lung injury. Ten Yorkshire pigs (five with lung injury, five healthy) were anesthetized, intubated, and mechanically ventilated; lung injury was induced by bronchial hydrochloric acid instillation. Each DCE-CT scan was obtained during a 30-s end-expiratory breath-hold. Reproducibility of PBF measurements was evaluated in three pigs. In eight pigs, undiluted and diluted Isovue-370 were separately injected to evaluate the effect of contrast viscosity on estimated PBF values. PBF was estimated with the peak-enhancement and the steepest-slope approach. Total-lung PBF was estimated in two healthy pigs to compare with cardiac output measured invasively by thermodilution in the pulmonary artery. Repeated measurements in the same animals yielded a good reproducibility of computed PBF maps. Injecting diluted isovue-370 resulted in smaller contrast-time curves in the pulmonary artery (P < 0.01) and vein (P < 0.01) without substantially diminishing peak signal intensity (P = 0.46 in the pulmonary artery) compared with the pure contrast agent since its viscosity is closer to that of blood. As compared with the peak-enhancement model, PBF values estimated by the steepest-slope model with diluted contrast were much closer to the cardiac output (R2 = 0.82) as compared with the peak-enhancement model. DCE-CT using the steepest-slope model and diluted contrast agent provided reliable quantitative estimates of PBF.NEW & NOTEWORTHY Dynamic contrast-enhanced CT using a lower-viscosity contrast agent in combination with tracer-kinetic analysis by the steepest-slope model improves pulmonary blood flow measurements and assessment of regional distributions of lung perfusion.


Asunto(s)
Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Animales , Porcinos , Medios de Contraste , Yopamidol , Reproducibilidad de los Resultados , Cinética , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Perfusión
15.
Acad Radiol ; 30(12): 2913-2920, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37164818

RESUMEN

OBJECTIVE: To assess the effectiveness of low contrast volume (LCV) chest CT performed with multiple contrast agents on multivendor CT with varying scanning techniques. METHODS: The study included 361 patients (65 ± 15 years; M: F 173:188) who underwent LCV chest CT on one of the six 64-256 detector-row CT scanners using single-energy (SECT) or dual-energy (DECT) modes. All patients were scanned with either a fixed-LCV (LCVf, n = 103) or weight-based LCV (LCVw, n = 258) protocol. Two thoracic radiologists independently assessed all LCV CT and patients' prior standard contrast volume (SCV, n = 263) chest CT for optimality of contrast enhancement in thoracic vasculature, cardiac chambers, and in pleuro-parenchymal and mediastinal abnormalities. CT attenuations were recorded in the main pulmonary trunk, ascending, and descending thoracic aorta. To assess the interobserver agreement, pulmonary arterial enhancement was divided into two groups: optimal or suboptimal. RESULTS: There was no significant difference among patients' BMI (p = 0.883) in the three groups. DECT had a significantly higher aortic arterial enhancement (250 ± 99HU vs 228 ± 76 HU for SECT, p < 0.001). Optimal enhancement was present in 558 of 624 chest CT (89.4%), whereas 66 of 624 chest CT with suboptimal enhancement was noted in 48 of 258 LCVw (18.6%) and 14 of 103 LCVf (13.6%). Most patients with suboptimal enhancement with LCVw injection protocol were overweight/obese (30/48; 62.5%), (p < 0.001). CONCLUSION: LCV chest CT can be performed across complex multivendor, multicontrast media, multiscanner, and multiprotocol CT practices. However, LCV chest CT examinations can result in suboptimal contrast enhancement in patients with larger body habitus.


Asunto(s)
Medios de Contraste , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Tórax , Aorta , Arteria Pulmonar
16.
Acad Radiol ; 30(12): 2921-2930, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37019698

RESUMEN

RATIONALE AND OBJECTIVES: Suboptimal chest radiographs (CXR) can limit interpretation of critical findings. Radiologist-trained AI models were evaluated for differentiating suboptimal(sCXR) and optimal(oCXR) chest radiographs. MATERIALS AND METHODS: Our IRB-approved study included 3278 CXRs from adult patients (mean age 55 ± 20 years) identified from a retrospective search of CXR in radiology reports from 5 sites. A chest radiologist reviewed all CXRs for the cause of suboptimality. The de-identified CXRs were uploaded into an AI server application for training and testing 5 AI models. The training set consisted of 2202 CXRs (n = 807 oCXR; n = 1395 sCXR) while 1076 CXRs (n = 729 sCXR; n = 347 oCXR) were used for testing. Data were analyzed with the Area under the curve (AUC) for the model's ability to classify oCXR and sCXR correctly. RESULTS: For the two-class classification into sCXR or oCXR from all sites, for CXR with missing anatomy, AI had sensitivity, specificity, accuracy, and AUC of 78%, 95%, 91%, 0.87(95% CI 0.82-0.92), respectively. AI identified obscured thoracic anatomy with 91% sensitivity, 97% specificity, 95% accuracy, and 0.94 AUC (95% CI 0.90-0.97). Inadequate exposure with 90% sensitivity, 93% specificity, 92% accuracy, and AUC of 0.91 (95% CI 0.88-0.95). The presence of low lung volume was identified with 96% sensitivity, 92% specificity, 93% accuracy, and 0.94 AUC (95% CI 0.92-0.96). The sensitivity, specificity, accuracy, and AUC of AI in identifying patient rotation were 92%, 96%, 95%, and 0.94 (95% CI 0.91-0.98), respectively. CONCLUSION: The radiologist-trained AI models can accurately classify optimal and suboptimal CXRs. Such AI models at the front end of radiographic equipment can enable radiographers to repeat sCXRs when necessary.


Asunto(s)
Pulmón , Radiografía Torácica , Adulto , Humanos , Persona de Mediana Edad , Anciano , Pulmón/diagnóstico por imagen , Estudios Retrospectivos , Radiografía , Radiólogos
17.
Emerg Radiol ; 30(3): 325-331, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37084161

RESUMEN

PURPOSE: Right ventricular strain (RVS) is used to risk stratify patients with acute pulmonary embolism (PE) and influence treatment decisions. Guidelines suggest that either computed tomography pulmonary angiography (CTPA) or transthoracic echocardiography (TTE) can be used to assess RVS. We sought to determine how often CTPA and TTE yield discordant results and to assess the test characteristics of CTPA compared to TTE. METHODS: We analyzed data from a single-center registry of PE cases severe enough to warrant activation of the hospital's Pulmonary Embolism Response Team (PERT). We defined RVS as a right ventricular to left ventricular ratio (RV/LV) ≥ 1 or radiologist's interpretation of RVS on CTPA or as the presence of either RV dilation, hypokinesis, or septal bowing on TTE. RESULTS: We included 554 patients in our analysis, of whom 333 (60%) had concordant RVS findings on CTPA and TTE. Using TTE as the reference standard, CTPA had a sensitivity of 95% (95% CI 92-97%) and a specificity of 4% (95% CI 2-8%) for identifying RVS. CONCLUSIONS: In a selected population of patients with acute PE for which PERT was activated, CTPA is highly sensitive but not specific for the detection of RVS when compared to TTE.


Asunto(s)
Embolia Pulmonar , Humanos , Embolia Pulmonar/diagnóstico por imagen , Ecocardiografía , Ventrículos Cardíacos/diagnóstico por imagen , Enfermedad Aguda
18.
J Am Coll Radiol ; 20(3): 352-360, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922109

RESUMEN

The multitude of artificial intelligence (AI)-based solutions, vendors, and platforms poses a challenging proposition to an already complex clinical radiology practice. Apart from assessing and ensuring acceptable local performance and workflow fit to improve imaging services, AI tools require multiple stakeholders, including clinical, technical, and financial, who collaborate to move potential deployable applications to full clinical deployment in a structured and efficient manner. Postdeployment monitoring and surveillance of such tools require an infrastructure that ensures proper and safe use. Herein, the authors describe their experience and framework for implementing and supporting the use of AI applications in radiology workflow.


Asunto(s)
Inteligencia Artificial , Radiología , Radiología/métodos , Diagnóstico por Imagen , Flujo de Trabajo , Comercio
19.
Diagnostics (Basel) ; 13(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36832266

RESUMEN

Purpose: Motion-impaired CT images can result in limited or suboptimal diagnostic interpretation (with missed or miscalled lesions) and patient recall. We trained and tested an artificial intelligence (AI) model for identifying substantial motion artifacts on CT pulmonary angiography (CTPA) that have a negative impact on diagnostic interpretation. Methods: With IRB approval and HIPAA compliance, we queried our multicenter radiology report database (mPower, Nuance) for CTPA reports between July 2015 and March 2022 for the following terms: "motion artifacts", "respiratory motion", "technically inadequate", and "suboptimal" or "limited exam". All CTPA reports were from two quaternary (Site A, n = 335; B, n = 259) and a community (C, n = 199) healthcare sites. A thoracic radiologist reviewed CT images of all positive hits for motion artifacts (present or absent) and their severity (no diagnostic effect or major diagnostic impairment). Coronal multiplanar images from 793 CTPA exams were de-identified and exported offline into an AI model building prototype (Cognex Vision Pro, Cognex Corporation) to train an AI model to perform two-class classification ("motion" or "no motion") with data from the three sites (70% training dataset, n = 554; 30% validation dataset, n = 239). Separately, data from Site A and Site C were used for training and validating; testing was performed on the Site B CTPA exams. A five-fold repeated cross-validation was performed to evaluate the model performance with accuracy and receiver operating characteristics analysis (ROC). Results: Among the CTPA images from 793 patients (mean age 63 ± 17 years; 391 males, 402 females), 372 had no motion artifacts, and 421 had substantial motion artifacts. The statistics for the average performance of the AI model after five-fold repeated cross-validation for the two-class classification included 94% sensitivity, 91% specificity, 93% accuracy, and 0.93 area under the ROC curve (AUC: 95% CI 0.89-0.97). Conclusion: The AI model used in this study can successfully identify CTPA exams with diagnostic interpretation limiting motion artifacts in multicenter training and test datasets. Clinical relevance: The AI model used in the study can help alert technologists about the presence of substantial motion artifacts on CTPA, where a repeat image acquisition can help salvage diagnostic information.

20.
Diagnostics (Basel) ; 13(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36766516

RESUMEN

Chest radiographs (CXR) are the most performed imaging tests and rank high among the radiographic exams with suboptimal quality and high rejection rates. Suboptimal CXRs can cause delays in patient care and pitfalls in radiographic interpretation, given their ubiquitous use in the diagnosis and management of acute and chronic ailments. Suboptimal CXRs can also compound and lead to high inter-radiologist variations in CXR interpretation. While advances in radiography with transitions to computerized and digital radiography have reduced the prevalence of suboptimal exams, the problem persists. Advances in machine learning and artificial intelligence (AI), particularly in the radiographic acquisition, triage, and interpretation of CXRs, could offer a plausible solution for suboptimal CXRs. We review the literature on suboptimal CXRs and the potential use of AI to help reduce the prevalence of suboptimal CXRs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA