Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35329605

RESUMEN

In the current paper, the results of the sensitization process' influence on the refractive organic materials' features are shown. The correlation between the refractive properties and the intermolecular charge transfer effect of doped organic thin films are shown via estimation of the laser-induced change in the refractive index. The refractive parameter is shown for a model organics matrix based on a polyimide doped with fullerenes, carbon nanotubes, reduced graphene oxides, etc. A second harmonic of the Nd-laser was used to record the holographic gratings in the Raman-Nath diffraction conditions at different spatial frequencies. The laser-induced refractive index change was considered to be an indicator in order to estimate the basic organic materials' physical-chemical characteristics. Additional data are presented for the liquid crystal cells doped with nanoparticles. The correlation between the content of the nanoobjects in the organics' bodies and the contact angle at the thin film surfaces is shown. Some propose to use this effect for general optoelectronics, for the optical limiting process, and for display application.

2.
Microsc Microanal ; 22(5): 933-938, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27641746

RESUMEN

A test of the qualities of polarizing filters was performed for a set of specimens including a bulk Nicol prism, standard polaroids, and special polyvinyl alcohol (PVA)-iodine thin-film filters coated on both sides by vertically oriented carbon nanotubes. The residual transmission of polarizing filters depending on the incidence angle of polarized light was examined in detail. The superior quality of polarizing film filters treated with carbon nanotubes was found. This fact allows us to propose a new application for polarizing films with carbon nanotubes for a polarizing cover glass. In such a way the cover glass may serve as an analyzer in a light polarizing microscope. Some features of optical scheme arrangement for the polarizing technique are discussed. The polarizing cover glass allows elimination of depolarization of light, which is inserted in a microscope objective. Test results of the proposed polarizing technique attest to the efficiency of using the polarizing cover glass. The new scheme for polaroid arrangement shows image-contrast enhancement by several percent in comparison with the standard layout.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA