Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Analyst ; 147(22): 4971-4979, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36205380

RESUMEN

Antigen tests for SARS-CoV-2 are widely used by the public during the ongoing COVID-19 pandemic, which demonstrates the societal impact of homogeneous immunosensor-related technologies. In this study, we used the PM Q-probe and Quenchbody technologies to develop a SARS-CoV-2 nucleocapsid protein (N protein) homogeneous immunosensor based on a human anti-N protein antibody. For the first time, we uncovered the crowding agent's role in improving the performance of the double-labeled Quenchbody, and the possible mechanisms behind this improvement are discussed. The 5% polyethylene glycol 6000 significantly improved both the response speed and sensitivity of SARS-CoV-2 Quenchbodies. The calculated limit of detection for recombinant N protein was 191 pM (9 ng mL-1) within 15 min of incubation, which was 9- to 10-fold lower than the assay without adding crowding agent. We also validated the developed immunosensor in a point-of-care test by measuring specimens from COVID-19-positive patients using a compact tube fluorometer. In brief, this work shows the feasibility of Quenchbody homogeneous immunosensors as rapid and cost-efficient tools for the diagnosis and high-throughput analysis of swab samples in large-scale monitoring and epidemiological studies of COVID-19 or other emerging infectious diseases.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Pandemias , Inmunoensayo , Proteínas de la Nucleocápside
2.
Sci Rep ; 12(1): 16031, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192567

RESUMEN

In-cell protein crystallization (ICPC) has been investigated as a technique to support the advancement of structural biology because it does not require protein purification and a complicated crystallization process. However, only a few protein structures have been reported because these crystals formed incidentally in living cells and are insufficient in size and quality for structure analysis. Here, we have developed a cell-free protein crystallization (CFPC) method, which involves direct protein crystallization using cell-free protein synthesis. We have succeeded in crystallization and structure determination of nano-sized polyhedra crystal (PhC) at a high resolution of 1.80 Å. Furthermore, nanocrystals were synthesized at a reaction scale of only 20 µL using the dialysis method, enabling structural analysis at a resolution of 1.95 Å. To further demonstrate the potential of CFPC, we attempted to determine the structure of crystalline inclusion protein A (CipA), whose structure had not yet been determined. We added chemical reagents as a twinning inhibitor to the CFPC solution, which enabled us to determine the structure of CipA at 2.11 Å resolution. This technology greatly expands the high-throughput structure determination method of unstable, low-yield, fusion, and substrate-biding proteins that have been difficult to analyze with conventional methods.


Asunto(s)
Nanopartículas , Proteínas , Cristalización/métodos , Cristalografía por Rayos X , Indoles , Propionatos , Proteínas/química
3.
FEMS Microbiol Lett ; 369(1)2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35191469

RESUMEN

Staphylococcus pseudintermedius is one of the major pathogens causing canine skin infection. In canine atopic dermatitis (AD), heterogeneous strains of S. pseudintermedius reside on the affected skin site. Because an increase in specific IgE to this bacterium has been reported, S. pseudintermedius is likely to exacerbate the severity of canine AD. In this study, the IgE reactivities to various S. pseudintermedius strains and the IgE-reactive molecules of S. pseudintermedius were investigated. First, examining the IgE reactivities to eight strains of S. pseudintermedius using 141 sera of AD dogs, strain variation of S. pseudintermedius showed 10-63% of the IgE reactivities. This is different from the expected result based on the concept of Staphylococcus aureus clonality in AD patients. Moreover, according to the western blot analysis, there were more than four proteins reactive to IgE. Subsequently, the analysis of the common IgE-reactive protein at ∼15 kDa confirmed that the DM13-domain-containing protein was reactive in AD dogs, which is not coincident with any S. aureus IgE-reactive molecules. Considering these, S. pseudintermedius is likely to exacerbate AD severity in dogs, slightly different from the case of S. aureus in human AD.


Asunto(s)
Dermatitis Atópica , Animales , Dermatitis Atópica/microbiología , Dermatitis Atópica/veterinaria , Perros , Humanos , Inmunoglobulina E/metabolismo , Staphylococcus/genética , Staphylococcus aureus/genética
4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836577

RESUMEN

The Mre11-Rad50-Nbs1 complex (MRN) is important for repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). The endonuclease activity of MRN is critical for resecting 5'-ended DNA strands at DSB ends, producing 3'-ended single-strand DNA, a prerequisite for HR. This endonuclease activity is stimulated by Ctp1, the Schizosaccharomyces pombe homolog of human CtIP. Here, with purified proteins, we show that Ctp1 phosphorylation stimulates MRN endonuclease activity by inducing the association of Ctp1 with Nbs1. The highly conserved extreme C terminus of Ctp1 is indispensable for MRN activation. Importantly, a polypeptide composed of the conserved 15 amino acids at the C terminus of Ctp1 (CT15) is sufficient to stimulate Mre11 endonuclease activity. Furthermore, the CT15 equivalent from CtIP can stimulate human MRE11 endonuclease activity, arguing for the generality of this stimulatory mechanism. Thus, we propose that Nbs1-mediated recruitment of CT15 plays a pivotal role in the activation of the Mre11 endonuclease by Ctp1/CtIP.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Péptidos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Quinasa de la Caseína II/metabolismo , Secuencia Conservada , Roturas del ADN de Doble Cadena , Fosforilación
5.
Viruses ; 12(10)2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987925

RESUMEN

The bacteriophage T4 genome contains two genes that code for proteins with lysozyme activity-e and 5. Gene e encodes the well-known T4 lysozyme (commonly called T4L) that functions to break the peptidoglycan layer late in the infection cycle, which is required for liberating newly assembled phage progeny. Gene product 5 (gp5) is the tail-associated lysozyme, a component of the phage particle. It forms a spike at the tip of the tail tube and functions to pierce the outer membrane of the Escherichia coli host cell after the phage has attached to the cell surface. Gp5 contains a T4L-like lysozyme domain that locally digests the peptidoglycan layer upon infection. The T4 Spackle protein (encoded by gene 61.3) has been thought to play a role in the inhibition of gp5 lysozyme activity and, as a consequence, in making cells infected by bacteriophage T4 resistant to later infection by T4 and closely related phages. Here we show that (1) gp61.3 is secreted into the periplasm where its N-terminal periplasm-targeting peptide is cleaved off; (2) gp61.3 forms a 1:1 complex with the lysozyme domain of gp5 (gp5Lys); (3) gp61.3 selectively inhibits the activity of gp5, but not that of T4L; (4) overexpression of gp5 causes cell lysis. We also report a crystal structure of the gp61.3-gp5Lys complex that demonstrates that unlike other known lysozyme inhibitors, gp61.3 does not interact with the active site cleft. Instead, it forms a "wall" that blocks access of an extended polysaccharide substrate to the cleft and, possibly, locks the enzyme in an "open-jaw"-like conformation making catalysis impossible.


Asunto(s)
Bacteriófago T4/enzimología , Muramidasa/antagonistas & inhibidores , Proteínas Virales/metabolismo , Bacteriófago T4/genética , Cristalografía por Rayos X , Escherichia coli/virología , Genoma Viral/genética , Conformación Proteica , Proteínas Virales/genética
6.
Nat Commun ; 11(1): 2950, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32528002

RESUMEN

During homologous recombination, Rad51 forms a nucleoprotein filament on single-stranded DNA to promote DNA strand exchange. This filament binds to double-stranded DNA (dsDNA), searches for homology, and promotes transfer of the complementary strand, producing a new heteroduplex. Strand exchange proceeds via two distinct three-strand intermediates, C1 and C2. C1 contains the intact donor dsDNA whereas C2 contains newly formed heteroduplex DNA. Here, we show that the conserved DNA binding motifs, loop 1 (L1) and loop 2 (L2) in site I of Rad51, play distinct roles in this process. L1 is involved in formation of the C1 complex whereas L2 mediates the C1-C2 transition, producing the heteroduplex. Another DNA binding motif, site II, serves as the DNA entry position for initial Rad51 filament formation, as well as for donor dsDNA incorporation. Our study provides a comprehensive molecular model for the catalytic process of strand exchange mediated by eukaryotic RecA-family recombinases.


Asunto(s)
ADN/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión/genética , ADN/genética , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Reparación del ADN/fisiología , ADN de Cadena Simple/genética , Recombinación Homóloga/genética , Recombinación Homóloga/fisiología , Humanos , Mutación/genética , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Estructura Secundaria de Proteína , Recombinasa Rad51/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
7.
Elife ; 92020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32204793

RESUMEN

Although Rad51 is the key protein in homologous recombination (HR), a major DNA double-strand break repair pathway, several auxiliary factors interact with Rad51 to promote productive HR. We present an interdisciplinary characterization of the interaction between Rad51 and Swi5-Sfr1, a conserved auxiliary factor. Two distinct sites within the intrinsically disordered N-terminus of Sfr1 (Sfr1N) were found to cooperatively bind Rad51. Deletion of this domain impaired Rad51 stimulation in vitro and rendered cells sensitive to DNA damage. By contrast, amino acid-substitution mutants, which had comparable biochemical defects, could promote DNA repair, suggesting that Sfr1N has another role in addition to Rad51 binding. Unexpectedly, the DNA repair observed in these mutants was dependent on Rad55-Rad57, another auxiliary factor complex hitherto thought to function independently of Swi5-Sfr1. When combined with the finding that they form a higher-order complex, our results imply that Swi5-Sfr1 and Rad55-Rad57 can collaboratively stimulate Rad51 in Schizosaccharomyces pombe.


The DNA within cells contains the instructions necessary for life and it must be carefully maintained. DNA is constantly being damaged by radiation and other factors so cells have evolved an arsenal of mechanisms that repair this damage. An enzyme called Rad51 drives one such DNA repair process known as homologous recombination. A pair of regulatory proteins known as the Swi5-Sfr1 complex binds to Rad51 and activates it. The complex can be thought of as containing two modules with distinct roles: one comprising the first half of the Sfr1 protein and that is capable of binding to Rad51, and a second consisting of the rest of Sfr1 bound to Swi5, which is responsible for activating Rad51. Here, Argunhan, Sakakura et al. used genetic and biochemical approaches to study how this first module, known as "Sfr1N", interacts with Rad51 in a microbe known as fission yeast. The experiments showed that both modules of Swi5-Sfr1 were important for Rad51 to drive homologous recombination. Swi5-Sfr1 complexes carrying mutations in the region of Sfr1N that binds to Rad51 were unable to activate Rad51 in a test tube. However, fission yeast cells containing the same mutations were able to repair their DNA without problems. This was due to the presence of another pair of proteins known as the Rad55-Rad57 complex that also bound to Swi5-Sfr1. The findings of Argunhan, Sakakura et al. suggest that the Swi5-Sfr1 and Rad55-Rad57 complexes work together to activate Rad51. Many genetically inherited diseases and cancers have been linked to mutations in DNA repair proteins. The fundamental mechanisms of DNA repair are very similar from yeast to humans and other animals, therefore, understanding the details of DNA repair in yeast may ultimately benefit human health in the future.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Recombinasa Rad51/metabolismo , Schizosaccharomyces/metabolismo , Escherichia coli , Regulación Fúngica de la Expresión Génica , Espectroscopía de Resonancia Magnética , Unión Proteica , Dominios Proteicos , Recombinasa Rad51/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
Nucleic Acids Res ; 46(5): 2548-2559, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29390145

RESUMEN

Mg2+ ion stimulates the DNA strand exchange reaction catalyzed by RecA, a key step in homologous recombination. To elucidate the molecular mechanisms underlying the role of Mg2+ and the strand exchange reaction itself, we investigated the interaction of RecA with Mg2+ and sought to determine which step of the reaction is affected. Thermal stability, intrinsic fluorescence, and native mass spectrometric analyses of RecA revealed that RecA binds at least two Mg2+ ions with KD ≈ 2 mM and 5 mM. Deletion of the C-terminal acidic tail of RecA made its thermal stability and fluorescence characteristics insensitive to Mg2+ and similar to those of full-length RecA in the presence of saturating Mg2+. These observations, together with the results of a molecular dynamics simulation, support the idea that the acidic tail hampers the strand exchange reaction by interacting with other parts of RecA, and that binding of Mg2+ to the tail prevents these interactions and releases RecA from inhibition. We observed that binding of the first Mg2+ stimulated joint molecule formation, whereas binding of the second stimulated progression of the reaction. Thus, RecA is actively involved in the strand exchange step as well as bringing the two DNAs close to each other.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Magnesio/metabolismo , Rec A Recombinasas/metabolismo , Cationes Bivalentes , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Espectrometría de Masas , Simulación de Dinámica Molecular , Unión Proteica , Pliegue de Proteína , Estabilidad Proteica , Rec A Recombinasas/química , Eliminación de Secuencia
9.
Viruses ; 9(7)2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28665339

RESUMEN

Long tail fibers of bacteriophage T4 are formed by proteins gp34, gp35, gp36, and gp37, with gp34 located at the phage-proximal end and gp37 at the phage-distal, receptor-binding end. We have solved the structure of the carboxy-terminal region of gp34, consisting of amino acids 894-1289, by single-wavelength anomalous diffraction and extended the structure to amino acids 744-1289 using data collected from crystals containing longer gp34-fragments. The structure reveals three repeats of a mixed α-ß fibrous domain in residues 744 to 877. A triple-helical neck connects to an extended triple ß-helix domain (amino acids 900-1127) punctuated by two ß-prism domains. Next, a ß-prism domain decorated with short helices and extended ß-helices is present (residues 1146-1238), while the C-terminal end is capped with another short ß-helical region and three ß-hairpins. The structure provides insight into the stability of the fibrous gp34 protein.


Asunto(s)
Bacteriófago T4/química , Proteínas de la Cola de los Virus/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica
10.
Biophys Rev ; 8(4): 385-396, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28510021

RESUMEN

The tail of bacteriophage T4 undergoes large structural changes upon infection while delivering the phage genome into the host cell. The baseplate is located at the distal end of the contractile tail and plays a central role in transmitting the signal to the tail sheath that the tailfibers have been adsorbed by a host bacterium. This then triggers the sheath contraction. In order to understand the mechanism of assembly and conformational changes of the baseplate upon infection, we have determined the structure of an in vitro assembled baseplate through the three-dimensional reconstruction of cryo-electron microscopy images to a resolution of 3.8 Å from electron micrographs. The atomic structure was fitted to the baseplate structure before and after sheath contraction in order to elucidate the conformational changes that occur after bacteriophage T4 has attached itself to a cell surface. The structure was also used to investigate the protease digestion of the assembly intermediates and the mutation sites of the tail genes, resulting in a number of phenotypes.

11.
FEBS Open Bio ; 5: 124-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25737838

RESUMEN

The NADH oxidase-peroxiredoxin (Prx) system of Amphibacillus xylanus reduces hydroperoxides with the highest turnover rate among the known hydroperoxide-scavenging enzymes. The high electron transfer rate suggests that there exists close interaction between NADH oxidase and Prx. Variant enzyme experiments indicated that the electrons from ß-NADH passed through the secondary disulfide, Cys128-Cys131, of NADH oxidase to finally reduce Prx. We previously reported that ionic strength is essential for a system to reduce hydroperoxides. In this study, we analyzed the effects of ammonium sulfate (AS) on the interaction between NADH oxidase and Prx by surface plasmon resonance analysis. The interaction between NADH oxidase and Prx was observed in the presence of AS. Dynamic light scattering assays were conducted while altering the concentration of AS and the ratio of NADH oxidase to Prx in the solutions. The results revealed that the two proteins formed a large oligomeric assembly, the size of which depended on the ionic strength of AS. The molecular mass of the assembly converged at approximately 300 kDa above 240 mM AS. The observed reduction rate of hydrogen peroxide also converged at the same concentration of AS, indicating that a complex formation is required for activation of the enzyme system. That the complex generation is dependent on ionic strength was confirmed by ultracentrifugal analysis, which resulted in a signal peak derived from a complex of NADH oxidase and Prx (300 mM AS, NADH oxidase: Prx = 1:10). The complex formation under this condition was also confirmed structurally by small-angle X-ray scattering.

12.
Mol Biosyst ; 10(10): 2677-83, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25082560

RESUMEN

Plasma membrane translocation is challenging due to the barrier of the cell membrane. Contrary to the synthetic cell-penetrating materials, tailed bacteriophages use cell-puncturing protein needles to puncture the cell membranes as an initial step of the DNA injection process. Cell-puncturing protein needles are thought to remain functional in the native phages. In this paper, we found that a bacteriophage T4 derived protein needle of 16 nm length spontaneously translocates through the living cell membrane. The ß-helical protein needle (ß-PN) internalizes into human red blood cells that lack endocytic machinery. By comparing the cellular uptake of ß-PNs with modified surface charge, it is shown that the uptake efficiency is maximum when it has a negative charge corresponding to a zeta potential value of -16 mV. In HeLa cells, uptake of ß-PN incorporates endocytosis independent mechanisms with partial macropinocytosis dependence. The endocytosis dependence of the uptake increases when the surface charges of ß-PNs are modified to positive or negative. Thus, these results suggest that natural DNA injecting machinery can serve as an inspiration to design new class of cell-penetrating materials with a tailored mechanism.


Asunto(s)
Secuencias de Aminoácidos , Membrana Celular/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Bacteriófago T4/metabolismo , Eritrocitos/metabolismo , Células HeLa , Humanos , Potenciales de la Membrana , Modelos Moleculares , Conformación Proteica , Transporte de Proteínas , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 7): 970-5, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25005101

RESUMEN

The phage-proximal part of the long tail fibres of bacteriophage T4 consists of a trimer of the 1289 amino-acid gene product 34 (gp34). Different carboxy-terminal parts of gp34 have been produced and crystallized. Crystals of gp34(726-1289) diffracting X-rays to 2.9 Šresolution, crystals of gp34(781-1289) diffracting to 1.9 Šresolution and crystals of gp34(894-1289) diffracting to 3.0 and 2.0 Šresolution and belonging to different crystal forms were obtained. Native data were collected for gp34(726-1289) and gp34(894-1289), while single-wavelength anomalous diffraction data were collected for selenomethionine-containing gp34(781-1289) and gp34(894-1289). For the latter, high-quality anomalous signal was obtained.


Asunto(s)
Bacteriófago T4/química , Selenometionina/química , Proteínas de la Cola de los Virus/química , Bacteriófago T4/metabolismo , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo
14.
J Biochem ; 155(3): 173-82, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24307403

RESUMEN

The bacterial Type 6 secretion system (T6SS) translocates protein toxins (also called effectors) from the cytosol of a T6SS-carrying cell to a target cell by a syringe-like supramolecular complex resembling a contractile tail of bacteriophages. Valine-glycine repeat protein G (VgrG) proteins, which are the homologues of the gp27-gp5 (gene product) cell puncturing complex of bacteriophage T4, are considered to be located at the attacking tip of the bacterial T6SS apparatus. Here, we over-expressed six VgrG proteins from pathogenic Escherichia coli O157 and CFT073 strains. Purified VgrG1 of E. coli O157 and c3393 of E. coli CFT073 form trimer in solution and are rich in ß-structure. We also solved the crystal structure of a trypsin-resistant C-terminal fragment of E. coli O157 VgrG1 (VgrG1C(G561)) at 1.95 Å resolution. VgrG1C(G561) forms a three-stranded antiparallel ß-helix which is structurally similar to the ß-helix domain of the central spike protein (gp138) of phi92 phage, indicating a possible evolutional relationship. Comparison of four different three-stranded ß-helix proteins shows how their amino acid composition determines the protein fold.


Asunto(s)
Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Escherichia coli O157/aislamiento & purificación , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteolisis , Sales (Química)/metabolismo , Soluciones , Relación Estructura-Actividad , Tripsina/metabolismo
15.
J Biochem ; 155(1): 63-71, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24155259

RESUMEN

Intermolecular interactions and conformation in dimer species of Palivizumab, a monoclonal antibody (IgG1), were investigated to elucidate the physical and chemical properties of the dimerized antibody. Palivizumab solution contains ∼1% dimer and 99% monomer. The dimer species was isolated by size-exclusion chromatography and analysed by a number of methods including analytical ultracentrifugation-sedimantetion velocity (AUC-SV). AUC-SV in the presence of sodium dodecyl sulphate indicated that approximately half of the dimer fraction was non-covalently associated, whereas the other half was dimerized by covalent bond. Disulphide bond and dityrosine formation were likely to be involved in the covalent dimerization. Limited proteolysis of the isolated dimer by Lys-C and mass spectrometry for the resultant products indicated that the dimer species were formed by Fab-Fc or Fab-Fab interactions, whereas Fc-Fc interactions were not found. It is thus likely that the dimerization occurs mainly via the Fab region. With regard to the conformation of the dimer species, the secondary and tertiary structures were shown to be almost identical to those of the monomer. Furthermore, the thermal stability turned out also to be very similar between the dimer and monomer.


Asunto(s)
Anticuerpos/metabolismo , Inmunoglobulina G/metabolismo , Anticuerpos/química , Cromatografía en Gel , Dicroismo Circular , Dimerización , Electroforesis en Gel de Poliacrilamida , Fluorescencia , Espectrometría de Masas , Conformación Proteica , Ultracentrifugación
16.
Appl Microbiol Biotechnol ; 97(24): 10413-21, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23504059

RESUMEN

The gene encoding acetophenone reductase (APRD), a useful biocatalyst for producing optically pure alcohols, was cloned from the cDNA of Geotrichum candidum NBRC 4597. The gene contained an open reading frame that consisted of 1,029 nucleotides corresponding to 342 amino acid residues. The subunit molecular weight was calculated to be 36.7 kDa. The predicted amino acid sequence did not have significant similarity to those of the acetophenone reductase reported previously. The gene was inserted into the pET-21b(+) expression vector and expressed in Escherichia coli Rosetta™(DE3)pLysS by induction with 1 mM of isopropyl-ß-D-thiogalactopyranoside. E. coli cell-free extract gave 21.9 U/mg APRD activity, which was 81 times that of the G. candidum cell-free extract. The enzyme was purified with a HisTrap FF crude column. The enzyme exhibited the highest activity at 60 °C, and optimum reducing and oxidizing activity were observed in a pH range around 7.0-8.0 and 8.5, respectively. The enzyme was most stable at 60 °C and pH 6.5-7.5. The Vmax and the apparent Km value of the reductase were 67.6 µmol/min per milligram of protein and 0.146 mM for acetophenone, respectively. From 4 % (v/v) 4-phenyl-2-butanone, (S)-4-phenyl-2-butanol was obtained with a yield >80 % and an enantiomeric excess >99 % in a 20 h reaction recycling NADH with 15 % (v/v) 2-propanol.


Asunto(s)
Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Inhibidores Enzimáticos/metabolismo , Geotrichum/enzimología , Compuestos Orgánicos/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/aislamiento & purificación , Cromatografía de Afinidad , Estabilidad de Enzimas , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Geotrichum/genética , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Peso Molecular , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Temperatura
17.
Nucleic Acids Res ; 41(6): 3901-14, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23396276

RESUMEN

In all eukaryotes, transcribed precursor tRNAs are maturated by processing and modification processes in nucleus and are transported to the cytoplasm. The cytoplasmic export protein (Cex1p) captures mature tRNAs from the nuclear export receptor (Los1p) on the cytoplasmic side of the nuclear pore complex, and it delivers them to eukaryotic elongation factor 1α. This conserved Cex1p function is essential for the quality control of mature tRNAs to ensure accurate translation. However, the structural basis of how Cex1p recognizes tRNAs and shuttles them to the translational apparatus remains unclear. Here, we solved the 2.2 Å resolution crystal structure of Saccharomyces cerevisiae Cex1p with C-terminal 197 disordered residues truncated. Cex1p adopts an elongated architecture, consisting of N-terminal kinase-like and a C-terminal α-helical HEAT repeat domains. Structure-based biochemical analyses suggested that Cex1p binds tRNAs on its inner side, using the positively charged HEAT repeat surface and the C-terminal disordered region. The N-terminal kinase-like domain acts as a scaffold to interact with the Ran-exportin (Los1p·Gsp1p) machinery. These results provide the structural basis of Los1p·Gsp1p·Cex1p·tRNA complex formation, thus clarifying the dynamic mechanism of tRNA shuttling from exportin to the translational apparatus.


Asunto(s)
Modelos Moleculares , Proteínas de Transporte Nucleocitoplasmático/química , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Citoplasma/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
J Mol Biol ; 425(10): 1731-44, 2013 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-23434847

RESUMEN

A hexamer of the bacteriophage T4 tail terminator protein, gp15, attaches to the top of the phage tail stabilizing the contractile sheath and forming the interface for binding of the independently assembled head. Here we report the crystal structure of the gp15 hexamer, describe its interactions in T4 virions that have either an extended tail or a contracted tail, and discuss its structural relationship to other phage proteins. The neck of T4 virions is decorated by the "collar" and "whiskers", made of fibritin molecules. Fibritin acts as a chaperone helping to attach the long tail fibers to the virus during the assembly process. The collar and whiskers are environment-sensing devices, regulating the retraction of the long tail fibers under unfavorable conditions, thus preventing infection. Cryo-electron microscopy analysis suggests that twelve fibritin molecules attach to the phage neck with six molecules forming the collar and six molecules forming the whiskers.


Asunto(s)
Bacteriófago T4/química , Proteínas Estructurales Virales/química , Secuencia de Aminoácidos , Bacteriófago T4/genética , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Proteínas Estructurales Virales/genética , Proteínas de la Cola de los Virus/química
19.
Biophys Rev ; 5(2): 79-84, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28510165

RESUMEN

Protein interactions in the assembly of the baseplate have been investigated. The baseplate of the phage T4 tail consists of a hub and six wedges which surround the former. Both reversible and irreversible interactions were found. Reversible association includes gp5 and gp27 (gp: gene product) which form a complex in a pH-dependent manner and gp18 polymerization, i.e. the tail sheath formation depends on the ionic strength. These reversible interactions were followed by irreversible or tight binding which pulls the whole association reaction to complete the assembly. The wedge assembly is strictly ordered which means that if one of the seven wedge proteins is missing, the assembly proceeds to that point and the remaining molecules stay non-associated. The strictly sequential assembly pathway is suggested to be materialized by successive conformational change upon binding, which can be shown by proteolytic probe.

20.
Dalton Trans ; 41(37): 11424-7, 2012 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-22890408

RESUMEN

We have succeeded in preparing semi-synthesized proteins bound to Sc(3+) ion which can promote an epoxide ring-opening reaction. The Sc(3+) binding site was created on the surface of [(gp5ßf)(3)](2) (N. Yokoi et al., Small, 2010, 6, 1873) by introducing a cysteine residue for conjugation of a bpy moiety using a thiol-maleimide coupling reaction. Three cysteine mutants [(gp5ßf_X)(3)](2) (X = G18C, L47C, N51C) were prepared to introduce a bpy in different positions because it had been reported that Sc(3+) ion can serve as a Lewis-acid catalyst for an epoxide ring-opening reaction upon binding of epoxide to bpy and two -ROH groups. G18C_bpy with Sc(3+) can accelerate the rate of catalysis of the epoxide ring-opening reaction and has the highest rate of conversion among the three mutants. The value is more than 20 times higher than that of the mixtures of [(gp5ßf)(3)](2)/2,2'-bipyridine and L-threonine/2,2'-bipyridine. The elevated activity was obtained by the cooperative effect of stabilizing the Sc(3+) coordination and accumulation of substrates on the protein surface. Thus, we expect that the semi-synthetic approach can provide insights into new rational design of artificial metalloenzymes.


Asunto(s)
Enzimas/síntesis química , Nanotubos/química , Escandio , Secuencias de Aminoácidos , Sitios de Unión , Química Analítica , Enzimas/química , Modelos Moleculares , Escandio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA