Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Adv Sci (Weinh) ; 11(14): e2308188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38303575

RESUMEN

Copper iodide (CuI) has garnered considerable attention as a promising alternative to p-type transparent conducting oxides owing to its low cation vacancy formation energy, shallow acceptor level, and readily modifiable conductivity via doping. Although sulfur (S) doping through liquid iodination has exhibited high efficacy in enhancing the conductivity with record high figure of merit (FOM) of 630 00 MΩ-1, solution-processed S-doped CuI (CuI:S) for low-cost large area fabrication has yet to be explored. Here, a highly conducting CuI:S thin-film for p-type transparent conducting electrode (TCE) is reported using low temperature solution-processing with thiourea derivatives. The optimization of thiourea dopant is determined through a comprehensive acid-base study, considering the effects of steric hindrance. The modification of active groups of thioureas facilitated a varying carrier concentration range of 9 × 1018-2.52 × 1020 cm-3 and conductivities of 4.4-390.7 S cm-1. Consequently, N-ethylthiourea-doped CuI:S exhibited a FOM value of 7 600 MΩ-1, which is the highest value among solution-processed p-type TCEs to date. Moreover, the formulation of CuI:S solution for highly conductive p-type TCEs can be extended to CuI:S inks, facilitating high-throughput solution-processes such as inkjet printing and spray coating.

2.
Nanoscale ; 16(8): 3936-3950, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38347766

RESUMEN

Two-dimensional (2D) materials have been significantly investigated as electrocatalysts for the hydrogen evolution reaction (HER) over the past few decades due to their excellent electrocatalytic properties and their structural uniqueness including the atomically thin structure and abundant active sites. Recently, 2D materials with various electronic properties have not only been used as active catalytic materials, but also employed in other components of the HER electrodes including a conductive electrode layer and an interfacial layer to maximize the HER efficiency or utilized as templates for catalytic nanostructure growth. This review provides the recent progress and future perspectives of 2D materials as key components in electrocatalytic systems with an emphasis on the HER applications. We categorized the use of 2D materials into three types: a catalytic layer, an electrode for catalyst support, and an interlayer for enhancing charge transfer between the catalytic layer and the electrode. We first introduce various scalable synthesis methods of electrocatalytic-grade 2D materials, and we discuss the role of 2D materials as HER catalysts, an interface for efficient charge transfer, and an electrode and/or a growth template of nanostructured noble metals.

3.
Adv Mater ; 36(2): e2305479, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37705254

RESUMEN

On-skin electronics require minimal thicknesses and decent transparency for conformal contact, imperceptible wearing, and visual aesthetics. It is challenging to search for advanced ultrathin dielectrics capable of supporting the active components while maintaining bending softness, easy handling, and wafer-scale processability. Here, self-delaminated aramid nanodielectrics (ANDs) are demonstrated, enabling any skin-like electronics easily exfoliated from the processing substrates after complicated nanofabrication. In addition, ANDs are mechanically strong, chemically and thermally stable, transparent and breathable, therefore are ideal substrates for soft electronics. As demonstrated, compliant epidermal electrodes comprising silver nanowires and ANDs can successfully record high-quality electromyogram signals with low motion artifacts and satisfying sweat and water resistance. Furthermore, ANDs can serve as both substrates and dielectrics in single-walled carbon nanotube field-effect transistors (FETs) with a merely 160-nm thickness, which can be operated within 4 V with on/off ratios of 1.4 ± 0.5 × 105 , mobilities of 39.9 ± 2.2 cm2 V-1 s-1 , and negligible hysteresis. The ultraconformal FETs can function properly when wrapped around human hair without any degradation in performance.

4.
ACS Nano ; 18(1): 1073-1083, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38100089

RESUMEN

The significance of metal-semiconductor interfaces and their impact on electronic device performance have gained increasing attention, with a particular focus on investigating the contact metal. However, another avenue of exploration involves substituting the contact metal at the metal-semiconductor interface of field-effect transistors with semiconducting layers to introduce additional functionalities to the devices. Here, a scalable approach for fabricating metal-oxide-semiconductor (channel)-semiconductor (interfacial layer) field-effect transistors is proposed by utilizing solution-processed semiconductors, specifically semiconducting single-walled carbon nanotubes and molybdenum disulfide, as the channel and interfacial semiconducting layers, respectively. The work function of the interfacial MoS2 is modulated by controlling the sulfur vacancy concentration through chemical treatment, which results in distinctive energy band alignments within a single device configuration. The resulting band alignments lead to multiple functionalities, including multivalued transistor characteristics and multibit nonvolatile memory (NVM) behavior. Moreover, leveraging the stable NVM properties, we demonstrate artificial synaptic devices with 88.9% accuracy of MNIST image recognition.

5.
Small ; 19(52): e2305201, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635110

RESUMEN

Multifunctional electrocatalysts are crucial to cost-effective electrochemical energy conversion and storage systems requiring mutual enhancement of disparate reactions. Embedding noble metal nanoparticles in 2D metal-organic frameworks (MOFs) are proposed as an effective strategy, however, the hybrids usually suffer from poor electrochemical performance and electrical conductivity in operating conditions. Herein, ultrafine Pt nanoparticles strongly anchored on thiophenedicarboxylate acid based 2D Fe-MOF nanobelt arrays (Pt@Fe-MOF) are fabricated, allowing sufficient exposure of active sites with superior trifunctional electrocatalytic activity for hydrogen evolution, oxygen evolution, and oxygen reduction reactions. The interfacial Fe─O─Pt bonds can induce the charge redistribution of metal centers, leading to the optimization of adsorption energy for reaction intermediates, while the dispersibility of ultrafine Pt nanoparticles contributes to the high mass activity. When Pt@Fe-MOF is used as bifunctional catalysts for water-splitting, a low voltage of 1.65 V is required at 100 mA cm-2 with long-term stability for 20 h at temperatures (65 °C) relevant for industrial applications, outperforming commercial benchmarks. Furthermore, liquid Zn-air batteries with Pt@Fe-MOF in cathodes deliver high open-circuit voltages (1.397 V) and decent cycling stability, which motivates the fabrication of flexible quasisolid-state rechargeable Zn-air batteries with remarkable performance.

6.
Sci Rep ; 13(1): 957, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864064

RESUMEN

The water solubility of molecules is one of the most important properties in various chemical and medical research fields. Recently, machine learning-based methods for predicting molecular properties, including water solubility, have been extensively studied due to the advantage of effectively reducing computational costs. Although machine learning-based methods have made significant advances in predictive performance, the existing methods were still lacking in interpreting the predicted results. Therefore, we propose a novel multi-order graph attention network (MoGAT) for water solubility prediction to improve the predictive performance and interpret the predicted results. We extracted graph embeddings in every node embedding layer to consider the information of diverse neighboring orders and merged them by attention mechanism to generate a final graph embedding. MoGAT can provide the atomic-specific importance scores of a molecule that indicate which atoms significantly influence the prediction so that it can interpret the predicted results chemically. It also improves prediction performance because the graph representations of all neighboring orders, which contain diverse range of information, are employed for the final prediction. Through extensive experiments, we demonstrated that MoGAT showed better performance than the state-of-the-art methods, and the predicted results were consistent with well-known chemical knowledge.

7.
ACS Appl Mater Interfaces ; 14(51): 57153-57164, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36519946

RESUMEN

Two-dimensional (2D) semiconductors are promising for next-generation electronics that are lightweight, flexible, and stretchable. Achieving stretchability with suppressed crack formation, however, is still difficult without introducing lithographically etched micropatterns, which significantly reduces active device areas. Herein, we report a solution-based hierarchical structuring to create stretchable semiconducting films that are continuous over wafer-scale areas via self-assembly of two-dimensional nanosheets. Electrochemically exfoliated MoS2 nanosheets with large lateral sizes (∼1 µm) are first assembled into a uniform film on a prestrained thermoplastic substrate, followed by strain relief of the substrate to create nanoscale wrinkles. Subsequent strain-relief cycles with the presence of soluble polymer films produce hierarchical wrinkles with multigenerational structures. Stretchable MoS2 films are then realized by curing an elastomer directly on the wrinkled surface and dissolving the thermoplastic. Three-generation hierarchical MoS2 wrinkles are resistant to cracking up to nearly 100% substrate stretching and achieve drastically enhanced photoresponsivity compared to the flat counterpart over the visible and NIR regimes, while the flat MoS2 film is beneficial in creating strain sensors because of its strain-dependent electrical response.

8.
Adv Mater ; 34(51): e2206932, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36210726

RESUMEN

A self-powered, color-filter-free blue photodetector (PD) based on halide perovskites is reported. A high external quantum efficiency (EQE) of 84.9%, which is the highest reported EQE in blue PDs, is achieved by engineering the A-site monovalent cations of wide-bandgap perovskites. The optimized composition of formamidinium (FA)/methylammonium (MA) increases the heat of formation, yielding a uniform and smooth film. The incorporation of Cs+ ions into the FA/MA composition suppresses the trap density and increases charge-carrier mobility, yielding the highest average EQE of 77.4%, responsivity of 0.280 A W-1 , and detectivity of 5.08 × 1012 Jones under blue light. Furthermore, Cs+ improves durability under repetitive operations and ambient atmosphere. The proposed device exhibits peak responsivity of 0.307 A W-1 , which is higher than that of the commercial InGaN-based blue PD (0.289 A W-1 ). This study will promote the development of next-generation image sensors with vertically stacked perovskite PDs.

9.
Adv Sci (Weinh) ; 9(26): e2201756, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35869036

RESUMEN

Metal nanoparticles (MeNPs) have been used in various industrial applications, owing to their unique physical and chemical properties different from the bulk counterparts. However, the natural oxidation of MeNPs is an imminent hindrance to their widespread applications despite much research efforts to prevent it. Here, a rational approach for non-oxidized bare MeNPs in air, which requires no additional surface passivation treatment is reported. The direct synthetic route uses the [Gd2 C]2+  · 2e- electride as an exceptional electron-donating agent to reduce diverse metal precursors in alcoholic solvents. All synthesized bare Cu, Ag, and Sn nanoparticles are ultra-stable in ambient air, exhibiting no trace of metal oxides even on their outermost atomic layer. This unique resistance to oxidation is ascribed to the accumulation of excess electrons on the surface of bare MeNPs, which originates from the spontaneous transfer of anionic electrons from the electride during the nanoparticle growth process. This approach provides not only a revolutionary scheme to obtain MeNPs with non-passivated and non-oxidized surfaces, but also fundamental knowledge about metal oxidation.

10.
Sci Rep ; 12(1): 6010, 2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397621

RESUMEN

We demonstrated highly transparent and flexible polytetrafluoroethylene (PTFE) passivation for the MoS2/Ag nanowire (Ag NW) electrodes used in thin film heaters (TFHs). The electrical, optical, and mechanical properties of PTFE coated MoS2/Ag NW electrode were compared to the bare MoS2/Ag NW electrode to demonstrate effective passivation of the sputtered PTFE films before and after the 85 °C-85% temperature-relative humidity environment test. In addition, we investigated the performances of TFHs with PTFE/MoS2/Ag NW as a function of PTFE thickness from 50 to 200 nm. The saturation temperature (87.3 °C) of TFHs with PTFE/MoS2/Ag NW electrode is higher than that (61.3 °C) of TFHs with bare MoS2/Ag NW, even after the 85 °C-85% temperature-relative humidity environment test, due to effective passivation of the PTFE layer. This indicates that transparent PTFE film prepared by sputtering process provides effective thin film passivation for the two-dimensional (2D) MoS2 and Ag NW hybrid electrode against harsh environment condition.

11.
ACS Mater Au ; 2(4): 382-393, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-36855703

RESUMEN

Following the significant discovery of van der Waals (vdW) layered materials with diverse electronic properties over more than a decade ago, the scalable production of high-quality vdW layered materials has become a critical goal to enable the transformation of fundamental studies into practical applications in electronics. To this end, solution-based processing has been proposed as a promising technique to yield vdW layered materials in large quantities. Moreover, the resulting dispersions are compatible with cost-effective device fabrication processes such as inkjet printing and roll-to-roll manufacturing. Despite these advantages, earlier works on solution-based processing methods (i.e., direct liquid-phase exfoliation or alkali-metal intercalation) have several challenges in achieving high-performance electronic devices, such as structural polydispersity in thickness and lateral size or undesired phase transformation. These challenges hinder the utilization of the solution-processed materials in the limited fields of electronics such as electrodes and conductors. In the meantime, the groundbreaking discovery of another solution-based approach, molecular intercalation-based electrochemical exfoliation, has shown significant potential for the use of vdW layered materials in scalable electronics owing to the nearly ideal structure of the exfoliated samples. The resulting materials are highly monodispersed, atomically thin, and reasonably large, enabling the preparation of electronically active thin-film networks via successful vdW interface formation. The formation of vdW interfaces is highly important for efficient plane-to-plane charge transport and mechanical stability under various deformations, which are essential to high-performance, flexible electronics. In this Perspective, we survey the latest developments in solution-based processing of vdW layered materials and their electronic applications while also describing the field's future outlook in the context of its current challenges.

12.
Nano Lett ; 22(2): 570-577, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34779637

RESUMEN

Multi-valued logic gates are demonstrated on solution-processed molybdenum disulfide (MoS2) thin films. A simple chemical doping process is added to the conventional transistor fabrication procedure to locally increase the work function of MoS2 by decreasing sulfur vacancies. The resulting device exhibits pseudo-heterojunctions comprising as-processed MoS2 and chemically treated MoS2 (c-MoS2). The energy-band misalignment of MoS2 and c-MoS2 results in a sequential activation of the MoS2 and c-MoS2 channel areas under a gate voltage sweep, which generates a stable intermediate state for ternary operation. Current levels and turn-on voltages for each state can be tuned by modulating the device geometries, including the channel thickness and length. The optimized ternary transistors are incorporated to demonstrate various ternary logic gates, including the inverter, NMIN, and NMAX gates.

13.
Adv Mater ; 34(12): e2106110, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34933395

RESUMEN

2D van der Waals (vdW) materials have been considered as potential building blocks for use in fundamental elements of electronic and optoelectronic devices, such as electrodes, channels, and dielectrics, because of their diverse and remarkable electrical properties. Furthermore, two or more building blocks of different electronic types can be stacked vertically to generate vdW heterostructures with desired electrical behaviors. However, such fundamental approaches cannot directly be applied practically because of issues such as precise alignment/positioning and large-quantity material production. Here, these limitations are overcome and wafer-scale vdW heterostructures are demonstrated by exploiting the lateral and vertical assembly of solution-processed 2D vdW materials. The high exfoliation yield of the molecular intercalation-assisted approach enables the production of micrometer-sized nanosheets in large quantities and its lateral assembly in a wafer-scale via vdW interactions. Subsequently, the laterally assembled vdW thin-films are vertically assembled to demonstrate various electronic device applications, such as transistors and photodetectors. Furthermore, multidimensional vdW heterostructures are demonstrated by integrating 1D carbon nanotubes as a p-type semiconductor to fabricate p-n diodes and complementary logic gates. Finally, electronic devices are fabricated via inkjet printing as a lithography-free manner based on the stable nanomaterial dispersions.

14.
Sci Technol Adv Mater ; 22(1): 875-884, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658671

RESUMEN

Two-dimensional molybdenum disulfide (MoS2) nanosheets have emerged as a promising material for transparent, flexible micro-supercapacitors, but their use in electrodes is hindered by their poor electrical conductivity and cycling stability because of restacking. In this paper, we report a novel electrode architecture to exploit electrochemical activity of MoS2 nanosheets. Electrochemically exfoliated MoS2 dispersion was spin coated on mesh-like silver networks encapsulated with a flexible conducting film exhibiting a pseudocapacitive behavior. MoS2 nanosheets were electrochemically active over the whole electrode surface and the conductive layer provided a pathway to transport electrons between the MoS2 and the electrolyte. As the result, the composite electrode achieved a large areal capacitance (89.44 mF cm-2 at 6 mA cm-2) and high energy and power densities (12.42 µWh cm-2 and P = 6043 µW cm-2 at 6 mA cm-2) in a symmetric cell configuration with 3 M KOH solution while exhibiting a high optical transmittance of ~80%. Because the system was stable against mechanical bending and charge/discharge cycles, a flexible micro-supercapacitor that can power electronics at different bending states was realized.

15.
Adv Mater ; 33(29): e2101243, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34062014

RESUMEN

A monolithic ternary logic transistor based on a vertically stacked double n-type semiconductor heterostructure is presented. Incorporation of the organic heterostructure into the conventional metal-oxide-semiconductor field-effect transistor (MOSFET) architecture induces the generation of stable multiple logic states in the device; these states can be further optimized to be equiprobable and distinctive, which are the most desirable and requisite properties for multivalued logic devices. A systematic investigation reveals that the electrical properties of the device are governed by not only the conventional field-effect charge transport but also the field-effect charge tunneling at the heterointerfaces, and thus, an intermediate state can be finely tuned by independently controlling the transition between the onsets of these two mechanisms. The achieved device performance agrees with the results of a numerical simulation based on a pseudo-metal-insulator-metal model; the obtained findings therefore provide rational criteria for material selection in a simple energetic perspective. The operation of various ternary logic circuits based on the optimized multistate heterojunction transistors, including the NMIN and NMAX gates, is also demonstrated.

16.
ACS Nano ; 15(7): 11276-11284, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34184867

RESUMEN

The synthesis of uniform low-defect graphene on a catalytic metal substrate is getting closer to the industrial level. However, its practical application is still challenging due to the lack of an appropriate method for its scalable damage-free transfer to a device substrate. Here, an efficient approach for a defect-free, etchant-free, wrinkle-free, and large-area graphene transfer is demonstrated by exploiting a multifunctional viscoelastic polymer gel as a simultaneous shock-free adhesive and dopant layer. Initially, an amine-rich polymer solution in its liquid form allows for conformal coating on a graphene layer grown on a Cu substrate. The subsequent thermally cured soft gel enables the shock-free and wrinkle-free direct mechanical exfoliation of graphene from a substrate due to its strong charge-transfer interaction with graphene and excellent shock absorption. The adhesive gel with a high optical transparency works as an electron doping layer toward graphene, which exhibits significantly reduced sheet resistances without optical transmittance loss. Lastly, the transferred graphene layer shows high mechanical and chemical stabilities under the repeated bending test and exposure to various solvents. This gel-assisted mechanical transfer method can be a solution to connect the missing part between large-scale graphene synthesis and next-generation electronics and optoelectronic applications.

17.
Small ; 17(24): e2100637, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33982862

RESUMEN

WS2 nanoflakes have great potential as electrode materials of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) because of their unique 2D structure, which facilitates the reversible intercalation and extraction of alkali metal ions. However, a fundamental understanding of the electrochemical lithiation/sodiation dynamics of WS2 nanoflakes especially at the nanoscale level, remains elusive. Here, by combining battery electrochemical measurements, density functional theory calculations, and in situ transmission electron microscopy, the electrochemical-reaction kinetics and mechanism for both lithiation and sodiation of WS2 nanoflakes are investigated at the atomic scale. It is found that compared to LIBs, SIBs exhibit a higher reversible sodium (Na) storage capacity and superior cyclability. For sodiation, the volume change due to ion intercalation is smaller than that in lithiation. Also, sodiated WS2 maintains its layered structure after the intercalation process, and the reduced metal nanoparticles after conversion in sodiation are well-dispersed and aligned forming a pattern similar to the layered structure. Overall, this work shows a direct interconnection between the reaction dynamics of lithiated/sodiated WS2 nanoflakes and their electrochemical performance, which sheds light on the rational optimization and development of advanced WS2 -based electrodes.

19.
Micromachines (Basel) ; 12(3)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809314

RESUMEN

Donor-acceptor-type organic semiconductor molecules are of great interest for potential organic field-effect transistor applications with ambipolar characteristics and non-volatile memory applications. Here, we synthesized an organic semiconductor, PDPPT-TT, and directly utilized it in both field-effect transistor and non-volatile memory applications. As-synthesized PDPPT-TT was simply spin-coated on a substrate for the device fabrications. The PDPPT-TT based field-effect transistor showed ambipolar electrical transfer characteristics. Furthermore, a gold nanoparticle-embedded dielectric layer was used as a charge trapping layer for the non-volatile memory device applications. The non-volatile memory device showed clear memory window formation as applied gate voltage increases, and electrical stability was evaluated by performing retention and cycling tests. In summary, we demonstrate that a donor-acceptor-type organic semiconductor molecule shows great potential for ambipolar field-effect transistors and non-volatile memory device applications as an important class of materials.

20.
Adv Sci (Weinh) ; 8(8): 2004216, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33898193

RESUMEN

The recent advancements in multivalued logic gates represent a rapid paradigm shift in semiconductor technology toward a new era of hyper Moore's law. Particularly, the significant evolution of materials is guiding multivalued logic systems toward a breakthrough gradually, whereby they are transcending the limits of conventional binary logic systems in terms of all the essential figures of merit, i.e., power dissipation, operating speed, circuit complexity, and, of course, the level of the integration. In this review, recent advances in the field of multivalued logic gates based on emerging materials to provide a comprehensive guideline for possible future research directions are reviewed. First, an overview of the design criteria and figures of merit for multivalued logic gates is presented, and then advancements in various emerging nanostructured materials-ranging from 0D quantum dots to multidimensional heterostructures-are summarized and these materials in terms of device design criteria are assessed. The current technological challenges and prospects of multivalued logic devices are also addressed and major research trends are elucidated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA