Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Korean J Physiol Pharmacol ; 26(4): 229-238, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35766001

RESUMEN

Severe bacterial infections are frequently accompanied by depressed neutrophil functions. Thus, agents that increase the microbicidal activity of neutrophils could add to a direct antimicrobial therapy. Lysophosphatidylcholine augments neutrophil bactericidal activity via the glycine (Gly)/glycine receptor (GlyR) α2/TRPM2/p38 mitogen-activated protein kinase (MAPK) pathway. However, the direct effect of glycine on neutrophil bactericidal activity was not reported. In this study, the effect of glycine on neutrophil bactericidal activity was examined. Glycine augmented bactericidal activity of human neutrophils (EC50 = 238 µM) in a strychnine (a GlyR antagonist)-sensitive manner. Glycine augmented bacterial clearance in mice, which was also blocked by strychnine (0.4 mg/kg, s.c.). Glycine enhanced NADPH oxidase-mediated reactive oxygen species (ROS) production and TRPM2-mediated [Ca2+]i increase in neutrophils that had taken up E. coli . Glycine augmented Lucifer yellow uptake (fluid-phase pinocytosis) and azurophil granule-phagosome fusion in neutrophils that had taken up E. coli in an SB203580 (a p38 MAPK inhibitor)-sensitive manner. These findings indicate that glycine augments neutrophil microbicidal activity by enhancing azurophil granule-phagosome fusion via the GlyRα2/ROS/calcium/p38 MAPK pathway. We suggest that glycine could be a useful agent for increasing neutrophil bacterial clearance.

2.
Korean J Physiol Pharmacol ; 26(3): 175-182, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35477545

RESUMEN

Translocation of azurophil granules is pivotal for bactericidal activity of neutrophils, the first-line defense cells against pathogens. Previously, we reported that lysophosphatidylcholine (LPC), an endogenous lipid, enhances bactericidal activity of human neutrophils via increasing translocation of azurophil granules. However, the precise mechanism of LPC-induced azurophil granule translocation was not fully understood. Treatment of neutrophil with LPC significantly increased CD63 (an azurophil granule marker) surface expression. Interestingly, cytochalasin B, an inhibitor of action polymerization, blocked LPC-induced CD63 surface expression. LPC increased F-actin polymerization. LPC-induced CD63 surface expression was inhibited by both a Rho specific inhibitor, Tat-C3 exoenzyme, and a Rho kinase (ROCK) inhibitor, Y27632 which also inhibited LPC-induced F-actin polymerization. LPC induced Rho-GTP activation. NSC23766, a Rac inhibitor, however, did not affect LPC-induced CD63 surface expression. Theses results suggest a novel regulatory mechanism for azurophil granule translocation where LPC induces translocation of azurophil granules via Rho/ROCK/F-actin polymerization pathway.

3.
Korean J Physiol Pharmacol ; 24(2): 165-171, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32140040

RESUMEN

Ischemic and traumatic brain injuries are the major acute central nervous system disorders that need to be adequately diagnosed and treated. To find biomarkers for these acute brain injuries, plasma levels of some specialized pro-resolving mediators (SPMs, i.e., lipoxin A4 [LXA4], resolvin [Rv] E1, RvE2, RvD1 and RvD2), CD59 and interleukin (IL)-6 were measured at 0, 6, 24, 72, and 168 h after global cerebral ischemic (GCI) and traumatic brain injuries (TBI) in rats. Plasma LXA4 levels tended to increase at 24 and 72 h after GCI. Plasma RvE1, RvE2, RvD1, and RvD2 levels showed a biphasic response to GCI; a significant decrease at 6 h with a return to the levels of the sham group at 24 h, and again a decrease at 72 h. Plasma CD59 levels increased at 6 and 24 h post-GCI, and returned to basal levels at 72 h post-GCI. For TBI, plasma LXA4 levels tended to decrease, while RvE1, RvE2, RvD1, and RvD2 showed barely significant changes. Plasma IL-6 levels were significantly increased after GCI and TBI, but with different time courses. These results show that plasma LXA4, RvE1, RvE2, RvD1, RvD2, and CD59 levels display differential responses to GCI and TBI, and need to be evaluated for their usefulness as biomarkers.

4.
Biol Pharm Bull ; 30(4): 772-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17409518

RESUMEN

We investigated the correlation between the flavonoid content and NO production inhibitory activity of fruit peel extracts using 20 citrus plants. The contents of seven flavonoids (naringin, naringenin, hesperidin, hesperetin, rutin, nobiletin, and tangeretin) were determined by HPLC analysis. Each citrus peel extract varied in flavonoid content, but the contents of nobiletin and tangeretin, which were contained in all 20 fruit peels, showed a positive and significant correlation with each other (r=0.879, p<0.0005 for immature fruit peels; r=0.858, p<0.0005 for mature fruit peels). All citrus peel extracts dose-dependently inhibited LPS-induced NO production in RAW 264.7 cells. This inhibitory effect was significantly and positively correlated with the content of nobiletin and tangeretin. Nobiletin showed a more potent NO production inhibitory activity (IC50=26.5 microM) compared to tangeretin (IC50=136.6 microM). This result supports the premise that nobiletin-rich citrus may provide protection against disease resulting from excessive NO production.


Asunto(s)
Citrus/química , Flavonoides/análisis , Flavonoides/farmacología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Extractos Vegetales/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Citrus/clasificación , Relación Dosis-Respuesta a Droga , Flavonoides/química , Flavonoides/metabolismo , Frutas/química , Concentración 50 Inhibidora , Liposomas/farmacología , Macrófagos/química , Macrófagos/efectos de los fármacos , Ratones , Estructura Molecular , Nitritos/análisis
5.
Exp Mol Med ; 35(2): 83-90, 2003 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-12754411

RESUMEN

Arsenic trioxide (As(2)O(3)) has been found to be remarkably effective in the treatment of patients with acute promyelocytic leukemia (APL). Although evidences for the proapoptotic activity of As(2)O(3) have been suggested in leukemic and other solid cancer cells, the nature of intracellular mechanisms is far from clear. In the present study, we investigated As(2)O(3) affect on the stress-responsive signaling pathways and pretreatment with antioxidants using HepG2 cells. When treated with micromolar concentrations of As(2)O(3), HepG2 cells became highly apoptotic paralleled with activation of caspase-3 and members of mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase (ERK) and c-jun NH(2)-terminal kinase (JNK) but not p38 MAP kinase. However, inhibition of each kinase activity failed to inhibit apoptosis by As(2)O(3). Addition of n-acetyl cysteine (NAC) or diphenyleneiodonium (DPI) effectively protected cells from apoptosis and significantly lowered As(2)O(3)-induced activation of caspase-3. However, neither NAC nor DPI was able to effect ERK or JNK activation induced by As(2)O(3). Guanidinoethyldisulfide dihydrochloride (GED) and 2-ethyl-2-thiopseudourea (ETU), known inhibitors of the inducible nitric oxide synthase (iNOS), also suppressed the apoptotic activity of As(2)O(3). These results suggest that As2O3 induces caspase-mediated apoptosis involving a mechanism generating oxidative stress. However, activation of some stress-responsive signaling pathways by As(2)O(3) may not be the major determinant in the course of apoptotic processes.


Asunto(s)
Apoptosis/efectos de los fármacos , Arsenicales/farmacología , Inhibidores Enzimáticos/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Estrés Oxidativo , Óxidos/farmacología , Transducción de Señal , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Trióxido de Arsénico , Arsenicales/administración & dosificación , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Humanos , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II , Estrés Oxidativo/efectos de los fármacos , Óxidos/administración & dosificación , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA