Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Environ Manage ; 316: 115155, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35561490

RESUMEN

Landfilling and burning plastic waste, especially waste polyvinyl chloride (PVC), can produce highly toxic and carcinogenic by-products that threaten the ecosystem and human health. However, there is still a lack of proper methods for waste PVC recycling. Therefore, developing feasible ways for waste PVC recovery is urgently needed. The purpose of this study is to analyze the characteristics of PVC-based adsorptive nanofiber membranes and test their ability for the treatment of wastewater containing Cibacron Brilliant Yellow 3G-P, a widely used reactive dye. The polyethylenimine/polyvinyl chloride membrane (PEI/PVCM) was characterized by FTIR, FE-SEM, TGA, tensile analysis, water contact angle measurement, and zeta-potential analysis. The FTIR analysis confirmed that the PEI has successfully crosslinked with PVC. The FE-SEM images showed that the nanofibers constituting PEI/PVCM are compact with an average fiber diameter of 181 nm. The TGA results showed that the membrane was able to remain stable in wastewater below 150 °C. The average stress and strain of the PEI/PVCM were 7.64 ± 0.32 MPa and 934.14 ± 48.12%, respectively. The water contact angle and zeta potential analysis showed that after the introduction of PEI, the membrane converted from hydrophobic to hydrophilic, and the pHpzc was increased from 3.1 to 1.08. The pure water flux of the membrane was measured at 0.1 MPa and the result was 3013 ± 60 L/m2‧h. The wastewater purification capability of PEI/PVCM was measured at an initial dye concentration of 10 ppm and pH 4-9 at 0.1 MPa. The reusability of PEI/PVCM was verified through three adsorption-desorption cycles. The results demonstrated that the PEI/PVCM is a reusable membrane for efficient purification of wastewater containing reactive dyes over a wide pH range (pH 4-8).


Asunto(s)
Nanofibras , Polietileneimina , Adsorción , Ecosistema , Humanos , Nanofibras/química , Polietileneimina/química , Cloruro de Polivinilo , Aguas Residuales/química , Agua
2.
J Hazard Mater ; 426: 128087, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923381

RESUMEN

Cellulose can be considered as a raw material for the production of filters and adsorbents for the removal of micropollutants, particularly in pharmaceutical-based products. To study its applications, it is important to estimate the adsorptive interaction of cellulose with the targeted chemicals, and develop predictive models for the expandable estimation into various types of micropollutants. Therefore, the adsorption affinity between cellulose and micropollutants was measured through isotherm experiments, and a quantitative structure-adsorption relationship model was developed using the linear free energy relationship (LFER) equation. The results indicate that microcrystalline cellulose has a remarkably high adsorption affinity with cationic micropollutants. Moreover, it has interactions with neutral and anionic micropollutants, although they have relatively lower affinities than those of cations. Through a modeling study, an LFER model - comprising of excess molar refraction, polar interaction, molecular volume, and charge-related terms - was developed, which could be used to predict the adsorption affinity values with an R2 of 0.895. To verify the robustness and predictability of the model, internal and external validation studies were performed. The results proved that the model was reasonable and acceptable, with an SE = 0.207 log unit.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Adsorción , Aniones , Celulosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA