Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Cell Biol ; 26(1): 72-85, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168768

RESUMEN

A growing body of evidence indicates that gut microbiota influence brain function and behaviour. However, the molecular basis of how gut bacteria modulate host nervous system function is largely unknown. Here we show that vitamin B12-producing bacteria that colonize the intestine can modulate excitatory cholinergic signalling and behaviour in the host Caenorhabditis elegans. Here we demonstrate that vitamin B12 reduces cholinergic signalling in the nervous system through rewiring of the methionine (Met)/S-adenosylmethionine cycle in the intestine. We identify a conserved metabolic crosstalk between the methionine/S-adenosylmethionine cycle and the choline-oxidation pathway. In addition, we show that metabolic rewiring of these pathways by vitamin B12 reduces cholinergic signalling by limiting the availability of free choline required by neurons to synthesize acetylcholine. Our study reveals a gut-brain communication pathway by which enteric bacteria modulate host behaviour and may affect neurological health.


Asunto(s)
S-Adenosilmetionina , Vitamina B 12 , Animales , Vitamina B 12/metabolismo , S-Adenosilmetionina/metabolismo , Caenorhabditis elegans/metabolismo , Colina/metabolismo , Bacterias/metabolismo , Metionina/metabolismo , Vitaminas/metabolismo , Colinérgicos/metabolismo
2.
Front Cell Dev Biol ; 8: 366, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32509787

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related death worldwide. Xanthohumol is a prenylated flavonoid isolated from hops. Although xanthohumol has been reported to exert anti-obesity, hypoglycemic, anti-hyperlipidemia and anti-cancer activities, the mechanisms underlying its chemotherapeutic activity are yet to be elucidated. In the present study, we found that xanthohumol inhibited ESCC cell proliferation in vitro and in vivo by targeting keratin (KRT)-18. Xanthohumol suppressed the proliferation, foci formation, and anchorage-independent colony growth of KYSE30 cells. Using xanthohumol-sepharose conjugated bead pull-down and mass/mass analysis, we found that KRT18 is a novel target of xanthohumol in KYSE30 cells. KRT18 protein was highly expressed in patient ESCC tissues compared to adjunct tissues. Anti-proliferative activity of xanthohumol was abrogated or enhanced according to the knockdown or overexpression of KRT18 protein, respectively. Xanthohumol also induced apoptosis and cell cycle arrest at G1 phase which was associated with the modulation of expression of related makers including cyclin D1, cyclin D3, and cleaved-PARP, Bcl-2, cytochrome c and Bax. While xanthohumol attenuated KRT18 protein expression, it failed to cause any change in the KRT18 mRNA level. Furthermore, oral administration of xanthohumol decreased tumor volume and weight in patient-derived xenografts (PDXs) tumors having overexpressed KRT18. Overall these results suggest that xanthohumol acts as a KRT18 regulator to suppress the growth of ESCC.

3.
Aging Cell ; 19(6): e13151, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32449834

RESUMEN

Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+ -dependent protein deacetylase, which regulates the expression of the ATP-dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho-mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)-like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2-Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Fosforilación , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasas de Translocación de Protón/biosíntesis , ATPasas de Translocación de Protón/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
4.
J Microbiol ; 55(2): 123-129, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28120189

RESUMEN

Silent information regulator 2 (Sir2), which is the founding member of the sirtuin family of proteins, is a pro-longevity factor for replicative lifespan (RLS) in Saccharomyces cerevisiae. Sir2 is required for transcriptional silencing at mating type loci, telomeres, and rDNA loci. Sir2 also represses transcription of highly expressed growth-related genes, such as PMA1 and some ribosomal protein genes. Although the Sir2 paralogues Hst1, Hst2, Hst3, and Hst4 occur in S. cerevisiae, none of them could replace the transcriptional regulation of PMA1 by Sir2 in the wild type. In this study, we demonstrate that Hst1, the closest Sir2 paralogue, deacetylates the acetylated lysine 16 of histone H4 (H4K16Ac) and represses PMA1 transcription in the sir2Δ pde2Δ mutant. We further show that Hst1 plays a role in extending the RLS of the sir2Δ pde2Δ mutant. Collectively, our results suggest that Hst1 can substitute for Sir2 by deacetylating H4K16Ac only in the sir2Δ pde2Δ.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Sirtuina 2/metabolismo , Replicación del ADN , ADN Ribosómico , Mutación , Unión Proteica , ATPasas de Translocación de Protón/genética , Saccharomyces cerevisiae/fisiología , Cloruro de Sodio/metabolismo
5.
Elife ; 42015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26329457

RESUMEN

Silent information regulator 2 (Sir2), an NAD(+)-dependent protein deacetylase, has been proposed to be a longevity factor that plays important roles in dietary restriction (DR)-mediated lifespan extension. In this study, we show that the Sir2's role for DR-mediated lifespan extension depends on cAMP-PKA and casein kinase 2 (CK2) signaling in yeast. Sir2 partially represses the transcription of lifespan-associated genes, such as PMA1 (encoding an H(+)-ATPase) and many ribosomal protein genes, through deacetylation of Lys 16 of histone H4 in the promoter regions of these genes. This repression is relieved by Sir2 S473 phosphorylation, which is mediated by active cAMP-PKA and CK2 signaling. Moderate DR increases the replicative lifespan of wild-type yeast but has no effect on that of yeast expressing the Sir2-S473E or S473A allele, suggesting that the effect of Sir2 on DR-mediated lifespan extension is negatively regulated by S473 phosphorylation. Our results demonstrate a mechanism by which Sir2 contributes to lifespan extension.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Saccharomyces cerevisiae/fisiología , Transducción de Señal , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/enzimología
6.
Eukaryot Cell ; 14(7): 671-83, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26002720

RESUMEN

NDR (nuclear Dbf2-related) kinases are essential components for polarized morphogenesis, cytokinesis, cell proliferation, and apoptosis. The NDR kinase Cbk1 is required for the hyphal growth of Candida albicans; however, the molecular functions of Cbk1 in hyphal morphogenesis are largely unknown. Here, we report that Cbk1 downregulates the transcriptional repressor Nrg1 through the mRNA-binding protein Ssd1, which has nine Cbk1 phosphorylation consensus motifs. We found that deletion of SSD1 partially suppressed the defective hyphal growth of the C. albicans cbk1Δ/Δ mutant and that Ssd1 physically interacts with Cbk1. Cbk1 was required for Ssd1 localization to polarized growth sites. The phosphomimetic SSD1 allele (ssd1-9E) allowed the cbk1Δ/Δ mutant to form short hyphae, and the phosphodeficient SSD1 allele (ssd1-9A) resulted in shorter hyphae than did the wild-type SSD1 allele, indicating that Ssd1 phosphorylation by Cbk1 is important for hyphal morphogenesis. Furthermore, we show that the transcriptional repressor Nrg1 does not disappear during hyphal initiation in the cbk1Δ/Δ mutant but is completely absent in the cbk1Δ/Δ ssd1Δ/Δ double mutant. Deletion of SSD1 also increased Als3 expression and internalization of the cbk1Δ/Δ mutant in the human embryonic kidney cell line HEK293T. Collectively, our results suggest that one of the functions of Cbk1 in the hyphal morphogenesis of C. albicans is to downregulate Nrg1 through Ssd1.


Asunto(s)
Candida albicans/metabolismo , Candidiasis/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Hifa/crecimiento & desarrollo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candidiasis/genética , Candidiasis/microbiología , Proteínas Fúngicas/genética , Células HEK293 , Humanos , Hifa/genética , Hifa/metabolismo , Morfogénesis , Mutación/genética , Fosforilación , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Técnicas del Sistema de Dos Híbridos
7.
J Microbiol ; 52(8): 652-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24997552

RESUMEN

Silent Information Regulator 2 (Sir2), a conserved NAD(+)-dependent histone deacetylase, has been implicated as one of the key factors in regulating stress response and longevity. Here, we report that the role of Sir2 in oxidative stress resistance and chronological lifespan is dependent on growth phase in yeast. In exponential phase, sir2Δ cells were more resistant to H2O2 stress and had a longer chronological lifespan than wild type. By contrast, in post-diauxic phase, sir2Δ cells were less resistant to H2O2 stress and had a shorter chronological lifespan than wild type cells. Similarly, the expression of antioxidant genes, which are essential to cope with oxidative stress, was regulated by Sir2 in a growth phase-dependent manner. Collectively, our findings highlight the importance of the metabolic state of the cell in determining whether Sir2 can protect against or accelerate cellular aging of yeast.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Estrés Oxidativo/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Peróxido de Hidrógeno/metabolismo , Mutación , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética
8.
J Biotechnol ; 164(4): 441-8, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23422691

RESUMEN

Vascular endothelial growth factor (VEGF) mediates angiogenesis, which plays a critical role in the development and differentiation of the vascular system. VEGF is a homodimeric glycoprotein that contains one N-glycosylation site. In this study, we evaluated Saccharomyces cerevisiae expression systems producing glycosylated and non-glycosylated splice variants of human VEGF, VEGF121, and VEGF165. The pre region of the mating factor α1 (MFα1) signal sequence was found to perform better than the entire MFα1 prepro signal sequence in secreting glycosylated VEGF. Secretion of non-glycosylated VEGF165 was completely blocked, indicating the importance of glycosylation in VEGF165 secretion. Interestingly, non-glycosylated VEGF165 was secreted when guided by the MFα1 prepro signal sequence, albeit to a lesser degree, compared to glycosylated VEGF165. N-glycosylation in the pro region was required for the prepro sequence to promote VEGF secretion. Furthermore, substitution of asparagine at the VEGF glycosylation site with lysine or glutamic acid increased secretion of non-glycosylated VEGF, a finding not previously reported. Our findings suggest that S. cerevisiae could be a suitable host for secreting biologically active, non-glycosylated VEGF for clinical use.


Asunto(s)
Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Asparagina , Biotecnología , Western Blotting , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Glicosilación , Humanos , Péptido Hidrolasas/metabolismo , Señales de Clasificación de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/genética
9.
Mol Microbiol ; 83(4): 728-45, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22211636

RESUMEN

Lag1p and Lac1p catalyse ceramide synthesis in Saccharomyces cerevisiae. This study shows that Lag1 family proteins are generally required for polarized growth in hemiascomycetous yeast. However, in contrast to S. cerevisiae where these proteins are functionally redundant, C. albicans Lag1p (CaLag1p) and Lac1p (CaLac1p) are functionally distinct. Lack of CaLag1p, but not CaLac1p, caused severe defects in the growth and hyphal morphogenesis of C. albicans. Deletion of CaLAG1 decreased expression of the hypha-specific HWP1 and ECE1 genes. Moreover, overexpression of CaLAG1 induced pseudohyphal growth in this organism under non-hypha-inducing conditions, suggesting that CaLag1p is necessary for relaying signals to induce hypha-specific gene expression. Analysis of ceramide and sphingolipid composition revealed that CaLag1p predominantly synthesizes ceramides with C24:0/C26:0 fatty acid moieties, which are involved in generating inositol-containing sphingolipids, whereas CaLac1p produces ceramides with C18:0 fatty acid moieties, which are precursors for glucosylsphingolipids. Thus, our study demonstrates that CaLag1p and CaLac1p have distinct substrate specificities and physiological roles in C. albicans.


Asunto(s)
Candida albicans/citología , Candida albicans/enzimología , Ceramidas/biosíntesis , Proteínas Fúngicas/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Eliminación de Gen , Hifa/citología , Hifa/enzimología , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Esfingosina N-Aciltransferasa/genética , Especificidad por Sustrato
10.
Protein Expr Purif ; 53(2): 331-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17368046

RESUMEN

Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an endogenous and bi-functional inhibitor of angiogenesis. TIMP-2 is expressed in an insoluble form in Escherichia coli and secreted at a very low level from yeast. Here, we report on a high level of secretion of TIMP-2 fused with human serum albumin (HSA) from the yeast Saccharomyces cerevisiae. The secreted HSA-TIMP-2 fusion protein (87kDa) was purified to greater than 95% homogeneity. The HSA-TIMP-2 protein inhibited approximately 81% of tube formation of human umbilical vein endothelial cells (HUVECs) when studied at a concentration of 187microM. The systemic administration of HSA-TIMP-2 at 40mg/kg to the C57B1/6 mouse inhibited the growth of B16BL6 tumors. Furthermore, a combination treatment of HSA-TIMP-2 with 5-fluorouracil (50mg/kg) showed significant effects on tumor growth in this model. The high level of secretion of the biologically active angiogenesis inhibitor from S. cerevisiae should facilitate fundamental research and application studies of HSA-TIMP-2, as an attractive candidate for therapeutic agents treating angiogenesis-related diseases.


Asunto(s)
Inhibidores de la Angiogénesis/biosíntesis , Inhibidores de la Angiogénesis/genética , Saccharomyces cerevisiae/genética , Albúmina Sérica/biosíntesis , Albúmina Sérica/genética , Inhibidor Tisular de Metaloproteinasa-2/biosíntesis , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidores de la Angiogénesis/aislamiento & purificación , Inhibidores de la Angiogénesis/farmacología , Animales , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Femenino , Fluorouracilo/farmacología , Expresión Génica , Vectores Genéticos , Humanos , Técnicas In Vitro , Inhibidores de la Metaloproteinasa de la Matriz , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Plásmidos/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología , Albúmina Sérica/aislamiento & purificación , Albúmina Sérica/farmacología , Inhibidor Tisular de Metaloproteinasa-2/aislamiento & purificación , Inhibidor Tisular de Metaloproteinasa-2/farmacología
11.
Biotechnol Bioeng ; 89(6): 619-29, 2005 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-15696522

RESUMEN

Galactose can be used not only as an inducer of the GAL promoters, but also as a carbon source by Saccharomyces cerevisiae, which makes recombinant fermentation processes that use GAL promoters complicated and expensive. To overcome this problem during the cultivation of the recombinant strain expressing human serum albumin (HSA) from the GAL10 promoter, a gal1 Delta mutant strain was constructed and its induction kinetics investigated. As expected, the gal1 Delta strain did not use galactose, and showed high levels of HSA expression, even at extremely low galactose concentrations (0.05-0.1 g/L). However, the gal1 Delta strain produced much more ethanol, in a complex medium containing glucose, than the GAL1 strain. To improve the physiological properties of the gal1 Delta mutant strain as a host for heterologous protein production, a null mutation of either MIG1 or HXK2 was introduced into the gal1 Delta mutant strain, generating gal1 Delta mig1 Delta and gal1 Delta hxk2 Delta double strains. The gal1 Delta hxk2 Delta strain showed a decreased rate of ethanol synthesis, with an accelerated rate of ethanol consumption, compared to the gal1 Delta strain, whereas the gal1 Delta mig1 Delta strain showed similar patterns to the gal1 Delta strain. Furthermore, the gal1 Delta hxk2 Delta strain secreted much more recombinant proteins (HSA and HSA fusion proteins) than the other strains. The results suggest that the gal1 Delta hxk2 Delta strain would be useful for the large-scale production of heterologous proteins from the GAL10 promoter in S. cerevisiae.


Asunto(s)
Galactosa/metabolismo , Hexoquinasa/genética , Mutación , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Etanol/metabolismo , Fermentación , Galactosa/genética , Genes Fúngicos , Ingeniería Genética , Hexoquinasa/metabolismo , Humanos , Cinética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae , Albúmina Sérica/genética , Albúmina Sérica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA