Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Nanobiotechnology ; 22(1): 469, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113060

RESUMEN

On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.


Asunto(s)
Nanoestructuras , Salud Bucal , Humanos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Animales , Enfermedades de la Boca/tratamiento farmacológico , Nanotecnología/métodos , Caries Dental
2.
Regen Biomater ; 11: rbae071, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966400

RESUMEN

Atherosclerosis, a chronic and progressive condition characterized by the accumulation of inflammatory cells and lipids within artery walls, remains a leading cause of cardiovascular diseases globally. Despite considerable advancements in drug therapeutic strategies aimed at managing atherosclerosis, more effective treatment options for atherosclerosis are still warranted. In this pursuit, the emergence of ß-cyclodextrin (ß-CD) as a promising therapeutic agent offers a novel therapeutic approach to drug delivery targeting atherosclerosis. The hydrophobic cavity of ß-CD facilitates its role as a carrier, enabling the encapsulation and delivery of various therapeutic compounds to affected sites within the vasculature. Notably, ß-CD-based nanoassemblies possess the ability to reduce cholesterol levels, mitigate inflammation, solubilize hydrophobic drugs and deliver drugs to affected tissues, making these nanocomponents promising candidates for atherosclerosis management. This review focuses on three major classes of ß-CD-based nanoassemblies, including ß-CD derivatives-based, ß-CD/polymer conjugates-based and polymer ß-CD-based nanoassemblies, highlighting a variety of formulations and assembly methods to improve drug delivery and therapeutic efficacy. These ß-CD-based nanoassemblies exhibit a variety of therapeutic mechanisms for atherosclerosis and offer systematic strategies for overcoming barriers to drug delivery. Finally, we discuss the present obstacles and potential opportunities in the development and application of ß-CD-based nanoassemblies as novel therapeutics for managing atherosclerosis and addressing cardiovascular diseases.

3.
Langmuir ; 40(26): 13550-13561, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38902967

RESUMEN

There has been a growing emphasis on facile preparation of binary heterogeneous composite materials. Leveraging the eco-friendly efficiency of supercritical CO2 technology, we achieved precise control over the influencing factors of mass transfer, enabling the accurate modulation of the resulting product morphology and properties. In the current study, CuxO/ZrOy composite materials were prepared using this technology and calcined to obtain electrode materials for the detection of cysteine (Cys). Essential comprehensive characterization techniques were employed to elucidate the heterojunction. The resulting electrode demonstrated a linear response to Cys within a concentration range of 0.5 nM to 1 µM, featuring a high sensitivity of 1035 µA·cm-2·µM-1 and a low detection limit of 97.3 nM. Thus, establishing a novel avenue for nonenzyme-based electrochemical sensors tailored for biologically active Cys detection through the implementation of a heterogeneous structure.

4.
Front Bioeng Biotechnol ; 12: 1348856, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322790

RESUMEN

Chronic wound management is an intractable medical and social problem, affecting the health of millions worldwide. Decellularized extracellular matrix (dECM)-based materials possess remarkable biological properties for tissue regeneration, which have been used as commercial products for skin regeneration in clinics. However, the complex external environment and the longer chronic wound-healing process hinder the application of pure dECM materials. dECM-based composite materials are constructed to promote the healing process of different wounds, showing noteworthy functions, such as anti-microbial activity and suitable degradability. Moreover, fabrication technologies for designing wound dressings with various forms have expanded the application of dECM-based composite materials. This review provides a summary of the recent fabrication technologies for building dECM-based composite materials, highlighting advances in dECM-based molded hydrogels, electrospun fibers, and bio-printed scaffolds in managing wounds. The associated challenges and prospects in the clinical application of dECM-based composite materials for wound healing are finally discussed.

5.
ACS Omega ; 9(5): 5888-5898, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343980

RESUMEN

The interplay between cells and their microenvironments plays a pivotal role in in vitro drug screening. Creating an environment that faithfully mimics the conditions of tumor cells within organ tissues is essential for enhancing the relevance of drug screening to real-world clinical scenarios. In our research, we utilized chemical decellularization techniques to engineer liver-decellularized extracellular matrix (L-dECM) scaffolds. These scaffolds were subsequently recellularized with HepG2 cells to establish a tumor organoid-like tissue model. Compared to the conventional tissue culture plate (TCP) culture, the tumor organoid-like tissue model demonstrated a remarkable enhancement in HepG2 cell growth, leading to increased levels of albumin secretion and urea synthesis. Additionally, our results revealed that, within a 3-day time frame, the cytotoxicity of doxorubicin (DOX) against cells cultured in the tumor organoid-like tissue model was notably reduced when compared to cells grown on TCPs. In contrast, there was no significant difference in the cytotoxicity of two compounds, triptolide and honokiol, both derived from traditional Chinese medicine, between TCP culture and the tumor organoid-like tissue culture, indicating a lack of substantial drug resistance. Western blotting assays further confirmed our findings by revealing elevated expressions of E-cadherin and vimentin proteins, which are closely associated with the epithelial-mesenchymal transition (EMT). These results underscored that the tumor organoid-like tissue model effectively promoted the EMT process in HepG2 cells. Moreover, we identified that triptolide and honokiol possess the capacity to reverse the EMT process in HepG2 cells, whereas DOX did not exhibit a significant effect. In light of these findings, the tumor organoid-like tissue model stands as a valuable predictive platform for screening antitumor agents and investigating the dynamics of the EMT process in tumor cells.

6.
Nanoscale ; 16(4): 1633-1649, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38168813

RESUMEN

Over the years, bioinspired mineralization-based approaches have been applied to synthesize multifunctional organic-inorganic nanocomposites. These nanocomposites can address the growing demands of modern biomedical applications. Proteins, serving as vital biological templates, play a pivotal role in the nucleation and growth processes of various organic-inorganic nanocomposites. Protein-mineralized nanomaterials (PMNMs) have attracted significant interest from researchers due to their facile and convenient preparation, strong physiological activity, stability, impressive biocompatibility, and biodegradability. Nevertheless, few comprehensive reviews have expounded on the progress of these nanomaterials in biomedicine. This article systematically reviews the principles and strategies for constructing nanomaterials using protein-directed biomineralization and biomimetic mineralization techniques. Subsequently, we focus on their recent applications in the biomedical field, encompassing areas such as bioimaging, as well as anti-tumor, anti-bacterial, and anti-inflammatory therapies. Furthermore, we discuss the challenges encountered in practical applications of these materials and explore their potential in future applications. This review aspired to catalyze the continued development of these bioinspired nanomaterials in drug development and clinical diagnosis, ultimately contributing to the fields of precision medicine and translational medicine.


Asunto(s)
Nanocompuestos , Neoplasias , Humanos , Medicina de Precisión , Biomimética , Nanocompuestos/uso terapéutico , Nanomedicina Teranóstica , Neoplasias/terapia
7.
Heliyon ; 10(1): e23779, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38223705

RESUMEN

As implantable materials, titanium, and its alloys have garnered enormous interest from researchers for dental and orthopedic procedures. Despite their success in wide clinical applications, titanium, and its alloys fail to stimulate osteogenesis, resulting in poor bonding strength with surrounding bone tissue. Optimizing the surface topology and altered compositions of titanium and titanium-based alloys substantially promotes peri-implant bone regeneration. This review summarizes the utilization and importance of various osteogenesis components loaded onto titanium and its alloys. Further, different surface-modification methods and the release efficacy of loaded substances are emphasized. Finally, we summarize the article with prospects. We believe that further investigation studies must focus on identifying novel loading components, exploring various innovative, optimized surface-modification methods, and developing a sustained-release system on implant surfaces to improve peri-implant bone formation.

8.
Regen Biomater ; 11: rbad097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173769

RESUMEN

The inadequate quantity of hydrogen peroxide (H2O2) in cancer cells promptly results in the constrained success of chemodynamic therapy (CDT). Significant efforts made throughout the years; nevertheless, researchers are still facing the great challenge of designing a CDT agent and securing H2O2 supply within the tumor cell. In this study, taking advantage of H2O2 level maintenance mechanism in cancer cells, a nanozyme-based bimetallic metal-organic frameworks (MOFs) tandem reactor is fabricated to elevate intracellular H2O2 levels, thereby enhancing CDT. In addition, under near-infrared excitation, the upconversion nanoparticles (UCNPs) loaded into the MOFs can perform photocatalysis and generate hydrogen, which increases cellular susceptibility to radicals induced from H2O2, inhibits cancer cell energy, causes DNA damages and induces tumor cell apoptosis, thus improving CDT therapeutic efficacy synergistically. The proposed nanozyme-based bimetallic MOFs-mediated CDT and UCNPs-mediated hydrogen therapy act as combined therapy with high efficacy and low toxicity.

9.
Regen Biomater ; 11: rbad107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173774

RESUMEN

Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.

10.
Small ; 20(2): e2305321, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658493

RESUMEN

2D MXene-Ti3 C2 Tx holds great promise in various electronic applications, especially for electromagnetic interference (EMI) shielding devices and supercapacitors. Ti3 C2 Tx synthesis typically involves the use of hazardous fluorine-containing chemicals that can result in the formation of inert fluoride functional groups on the surface of Ti3 C2 Tx , severely degrading its properties and posing a threat to the performance of electron transfer among electrical devices. Herein, a supercritical carbon dioxide-based ternary solution (scCO2 /DMSO/HCl) to produce fluoride-free Ti3 C2 Tx in mild conditions (via 0.5 m HCl, 20 MPa, 32 °C) is reported. The fluorine-free Ti3 C2 Tx films electrode presents an excellent gravimetric capacitance of 320 F g-1 at 2 mV s-1 in 1 m H2 SO4 . Besides, it is demonstrated that fluorine-free Ti3 C2 Tx films exhibit outstanding EMI shielding efficiency of 53.12 dB at 2.5 µm thickness. The findings offer a mild and practical approach to producing fluoride-free Ti3 C2 Tx and open opportunities for exploring MXenes' potential applications in various fields.

11.
Adv Healthc Mater ; 13(10): e2303582, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38160261

RESUMEN

Despite their unique characteristics, 2D MXenes with sole photothermal conversion ability are required to explore their superfluous abilities in biomedicine. The small-molecule-based chemotherapeutics suffer from various shortcomings of time-consuming and expensiveness concerning theoretical and performance (preclinical/clinical) checks. This study demonstrates the fabrication of Ti3C2 MXene nanosheets (TC-MX NSs) and subsequent decoration with transition metal oxides, that is, copper oxide (Cu2O/MX, CO-MX NCs) as drugless nanoarchitectonics for synergistic photothermal (PTT)-chemodynamic therapeutic (CDT) efficacies. Initially, the monolayer/few-layered TC-MX NSs are prepared using the chemical etching-assisted ultrasonic exfoliation method and then deposited with Cu2O nanoconstructs using the in situ reduction method. Further, the photothermal ablation under near-infrared (NIR)-II laser irradiation shows PTT effects of CO-MX NCs. The deposited Cu2O on TC-MX NSs facilitates the release of copper (Cu+) ions in the acidic microenvironment intracellularly for Fenton-like reaction-assisted CDT effects and enriched PTT effects synergistically. Mechanistically, these deadly free radicals intracellularly imbalance the glutathione (GSH) levels and result in mitochondrial dysfunction, inducing apoptosis of 4T1 cells. Finally, the in vivo investigations in BALB/c mice confirm the substantial ablation of breast carcinoma. Together, these findings demonstrate the potential synergistic PTT-CDT effects of the designed CO-MX NCs as drugless nanoarchitectonics against breast carcinoma.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias , Animales , Ratones , Humanos , Femenino , Cobre/farmacología , Óxidos/farmacología , Apoptosis , Glutatión , Ratones Endogámicos BALB C , Línea Celular Tumoral , Peróxido de Hidrógeno , Microambiente Tumoral
12.
Bioact Mater ; 33: 311-323, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38076647

RESUMEN

The current strategy of co-delivering copper ions and disulfiram (DSF) to generate cytotoxic CuET faces limitations in achieving rapid and substantial CuET production, specifically in tumor lesions. To overcome this challenge, we introduce a novel burst-release cascade reactor composed of phase change materials (PCMs) encapsulating ultrasmall Cu2-xSe nanoparticles (NPs) and DSF (DSF/Cu2-xSe@PCM). Once triggered by second near-infrared (NIR-II) light irradiation, the reactor swiftly releases Cu2-xSe NPs and DSF, enabling catalytic reactions that lead to the rapid and massive production of Cu2-xSe-ET complexes, thereby achieving in situ chemotherapy. The mechanism of the burst reaction is due to the unique properties of ultrasmall Cu2-xSe NPs, including their small size, multiple defects, and high surface activity. These characteristics allow DSF to be directly reduced and chelated on the surface defect sites of Cu2-xSe, forming Cu2-xSe-ET complexes without the need for copper ion release. Additionally, Cu2-xSe-ET has demonstrated a similar (to CuET) anti-tumor activity through increased autophagy, but with even greater potency due to its unique two-dimensional-like structure. The light-triggered cascade of interlocking reactions, coupled with in situ explosive generation of tumor-suppressive substances mediated by the size and valence of Cu2-xSe, presents a promising approach for the development of innovative nanoplatforms in the field of precise tumor chemotherapy.

13.
Regen Biomater ; 10: rbad076, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808956

RESUMEN

Bacterial infections cause severe health conditions, resulting in a significant economic burden for the public health system. Although natural phytochemicals are considered promising anti-bacterial agents, they suffer from several limitations, such as poor water solubility and low bioavailability in vivo, severely restricting their wide application. Herein, we constructed a near-infrared (NIR)-responsive carrier-free berberine hydrochloride (BH, phytochemicals)/indocyanine green (ICG, photosensitizer) nanoparticles (BI NPs) for synergistic antibacterial of an infected wound. Through electrostatic interaction and π-π stacking, the hydrophobic BH and amphiphilic ICG are initially self-assembled to generate carrier-free nanoparticles. The obtained BI NPs demonstrated NIR-responsive drug release behavior and better photothermal conversion efficiency of up to 36%. In addition, BI NPs stimulated by NIR laser exhibited remarkable antibacterial activity, which realized the synergistic antibacterial treatment and promoted infected wound healing. In summary, the current research results provided a candidate strategy for self-assembling new BI NPs to treat bacterial infections synergistically.

14.
Regen Biomater ; 10: rbad069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37641591

RESUMEN

Atherosclerosis (AS) has emerged as one of the prevalent arterial vascular diseases characterized by plaque and inflammation, primarily causing disability and mortality globally. Drug therapy remains the main treatment for AS. However, a series of obstacles hinder effective drug delivery. Nature, from natural micro-/nano-structural biological particles like natural cells and extracellular vesicles to the distinctions between the normal and pathological microenvironment, offers compelling solutions for efficient drug delivery. Nature-inspired nanocarriers of synthetic stimulus-responsive materials and natural components, such as lipids, proteins and membrane structures, have emerged as promising candidates for fulfilling drug delivery needs. These nanocarriers offer several advantages, including prolonged blood circulation, targeted plaque delivery, targeted specific cells delivery and controlled drug release at the action site. In this review, we discuss the nature-inspired nanocarriers which leverage the natural properties of cells or the microenvironment to improve atherosclerotic drug therapy. Finally, we provide an overview of the challenges and opportunities of applying these innovative nature-inspired nanocarriers.

15.
Small ; 19(52): e2304781, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635095

RESUMEN

Metal oxides with diverse compositions and structures have garnered considerable interest from researchers in various reactions, which benefits from transmission electron microscopy (TEM) in determining their morphologies, phase, structural and chemical information. Recent breakthroughs have made liquid-phase TEM a promising imaging platform for tracking the dynamic structure, morphology, and composition evolution of metal oxides in solution under work conditions. Herein, this review introduces the recent advances in liquid cells, especially closed liquid cell chips. Subsequently, the recent progress including particle growth, phase transformation, self-assembly, core-shell nanostructure growth, and chemical etching are introduced. With the late technical advances in TEM and liquid cells, liquid-phase TEM is used to characterize many fundamental processes of metal oxides for CO2 reduction and water-splitting reactions. Finally, the outlook and challenges in this research field are discussed. It is believed this compilation inspires and stimulates more efforts in developing and utilizing in situ liquid-phase TEM for metal oxides at the atomic scale for different applications.

16.
Colloids Surf B Biointerfaces ; 227: 113387, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37285669

RESUMEN

Cancer has emerged as one of the severe ailments due to the uncontrolled proliferation rate of cells, accounting for millions of deaths annually. Despite the availability of various treatment strategies, including surgical interventions, radiation, and chemotherapy, tremendous advancements in the past two decades of research have evidenced the generation of different nanotherapeutic designs toward providing synergistic therapy. In this study, we demonstrate the assembly of a versatile nanoplatform based on the hyaluronic acid (HA)-coated molybdenum dioxide (MoO2) assemblies to act against breast carcinoma. The hydrothermal approach-assisted MoO2 constructs are immobilized with doxorubicin (DOX) molecules on the surface. Further, these MoO2-DOX hybrids are encapsulated with the HA polymeric framework. Furthermore, the versatile nanocomposites of HA-coated MoO2-DOX hybrids are systematically characterized using various characterization techniques, and explored biocompatibility in the mouse fibroblasts (L929 cell line), as well as synergistic photothermal (808-nm laser irradiation for 10 min, 1 W/cm2) and chemotherapeutic properties against breast carcinoma (4T1 cells). Finally, the mechanistic views concerning the apoptosis rate are explored using the JC-1 assay to measure the intracellular mitochondrial membrane potential (MMP) levels. In conclusion, these findings indicated excellent photothermal and chemotherapeutic efficacies, exploring the enormous potential of MoO2 composites against breast cancer.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Animales , Ratones , Fototerapia , Doxorrubicina , Molibdeno/farmacología , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
17.
Bioact Mater ; 28: 27-49, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37223277

RESUMEN

Magnetosomes, synthesized by magnetotactic bacteria (MTB), have been used in nano- and biotechnological applications, owing to their unique properties such as superparamagnetism, uniform size distribution, excellent bioavailability, and easily modifiable functional groups. In this review, we first discuss the mechanisms of magnetosome formation and describe various modification methods. Subsequently, we focus on presenting the biomedical advancements of bacterial magnetosomes in biomedical imaging, drug delivery, anticancer therapy, biosensor. Finally, we discuss future applications and challenges. This review summarizes the application of magnetosomes in the biomedical field, highlighting the latest advancements and exploring the future development of magnetosomes.

18.
Biomed Pharmacother ; 162: 114643, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37031496

RESUMEN

Multi-drug resistance (MDR) in cancer cells, either intrinsic or acquired through various mechanisms, significantly hinders the therapeutic efficacy of drugs. Typically, the reduced therapeutic performance of various drugs is predominantly due to the inherent over expression of ATP-binding cassette (ABC) transporter proteins on the cell membrane, resulting in the deprived uptake of drugs, augmenting drug detoxification, and DNA repair. In addition to various physiological abnormalities and extensive blood flow, MDR cancer phenotypes exhibit improved apoptotic threshold and drug efflux efficiency. These severe consequences have substantially directed researchers in the fabrication of various advanced therapeutic strategies, such as co-delivery of drugs along with various generations of MDR inhibitors, augmented dosage regimens and frequency of administration, as well as combinatorial treatment options, among others. In this review, we emphasize different reasons and mechanisms responsible for MDR in cancer, including but not limited to the known drug efflux mechanisms mediated by permeability glycoprotein (P-gp) and other pumps, reduced drug uptake, altered DNA repair, and drug targets, among others. Further, an emphasis on specific cancers that share pathogenesis in executing MDR and effluxed drugs in common is provided. Then, the aspects related to various nanomaterials-based supramolecular programmable designs (organic- and inorganic-based materials), as well as physical approaches (light- and ultrasound-based therapies), are discussed, highlighting the unsolved issues and future advancements. Finally, we summarize the review with interesting perspectives and future trends, exploring further opportunities to overcome MDR.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Resistencia a Múltiples Medicamentos , Transportadoras de Casetes de Unión a ATP/metabolismo , Neoplasias/tratamiento farmacológico , Preparaciones Farmacéuticas
19.
Regen Biomater ; 10: rbad014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915713

RESUMEN

Cancer metastasis is the primary cause of all cancer-related deaths due to the lack of effective targeted drugs that simultaneously block multiple signaling pathways that drive the dissemination and growth of cancer cells. The unique proline isomerase Pin1 activates numerous cancer pathways, but its role in cancer metastasis and the inhibitory efficacy of Pin1 inhibitors on cancer metastasis are unknown. Moreover, the applicability of Pin1 inhibitor-all-trans retinoic acid (ATRA) is limited due to its several drawbacks. Herein, uniform ATRA-loaded polylactic acid-polyethylene glycol block copolymer nanoparticles (ATRA-NPs) with high encapsulation efficiency, good cellular uptake, excellent controlled release performance and pharmacokinetics are developed using supercritical carbon dioxide processing combined with an optimized design. ATRA-NPs exhibited excellent biosafety and significant inhibition on the growth and metastasis of hepatocellular carcinoma. Pin1 played a key role in cancer metastasis and was the main target of ATRA-NPs. ATRA-NPs exerted their potent anti-metastatic effect by inhibiting Pin1 and then simultaneously blocking multiple signaling pathways and cancer epithelial-mesenchymal progression. Since ATRA-NPs could effectively couple the inhibition of cancer cell dissemination with cancer growth, it provided a novel therapeutic strategy for efficiently inhibiting cancer metastasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA