Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Commun Biol ; 7(1): 806, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961250

RESUMEN

Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.


Asunto(s)
Cerebelo , Receptores de Glutamato Metabotrópico , Sinapsis , Animales , Cerebelo/metabolismo , Cerebelo/fisiología , Cerebelo/citología , Sinapsis/fisiología , Sinapsis/metabolismo , Ratones , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones Noqueados , Ratones Endogámicos C57BL
2.
iScience ; 27(6): 110145, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38952682

RESUMEN

Plasticity during the critical period is important for the functional maturation of cortical neurons. While characteristics of plasticity are diverse among cortical layers, it is unknown whether critical period timing is controlled by a common or unique molecular mechanism among them. We here clarified layer-specific regulation of the critical period timing of ocular dominance plasticity in the primary visual cortex. Mice lacking the endocannabinoid synthesis enzyme diacylglycerol lipase-α exhibited precocious critical period timing, earlier maturation of inhibitory synaptic function in layers 2/3 and 4, and impaired development of the binocular matching of orientation selectivity exclusively in layer 2/3. Activation of cannabinoid receptor restored ocular dominance plasticity at the normal critical period in layer 2/3. Suppression of GABAA receptor rescued precocious ocular dominance plasticity in layer 4. Therefore, endocannabinoids regulate critical period timing and maturation of visual function partly through the development of inhibitory synaptic functions in a layer-dependent manner.

3.
Neurosci Res ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740268

RESUMEN

The gramicidin-perforated patch-clamp technique is indispensable for recording neuronal activities without changing the intracellular Cl- concentration. Conventionally, gramicidin contained in the pipette fluid is delivered to the cell membrane by passive diffusion. Gramicidin deposited on the pipette orifice sometimes hampers giga-seal formation, and perforation progresses only slowly. These problems may be circumvented by delivering a high concentration of gramicidin from an intra-pipette capillary after a giga-seal is formed. We herein describe the detailed protocol of this improved method. This protocol would greatly facilitate the investigation of Cl- gradient-dependent neuronal activities.

4.
Commun Biol ; 6(1): 924, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689776

RESUMEN

Cerebellar climbing fibers convey sensorimotor information and their errors, which are used for motor control and learning. Furthermore, they represent reward-related information. Despite such functional diversity of climbing fiber signals, it is still unclear whether each climbing fiber conveys the information of single or multiple modalities and how the climbing fibers conveying different information are distributed over the cerebellar cortex. Here we perform two-photon calcium imaging from cerebellar Purkinje cells in mice engaged in a voluntary forelimb lever-pull task and demonstrate that climbing fiber responses in 68% of Purkinje cells can be explained by the combination of multiple behavioral variables such as lever movement, licking, and reward delivery. Neighboring Purkinje cells exhibit similar climbing fiber response properties, form functional clusters, and share noise fluctuations of responses. Taken together, individual climbing fibers convey behavioral information on multiplex variables and are spatially organized into the functional modules of the cerebellar cortex.


Asunto(s)
Cerebelo , Células de Purkinje , Animales , Ratones , Axones , Calcio , Recompensa
5.
Elife ; 122023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712651

RESUMEN

Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.


Asunto(s)
Aprendizaje , Refuerzo en Psicología , Animales , Ratones , Cerebelo , Axones , Células de Purkinje
6.
Front Mol Neurosci ; 16: 1206245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426069

RESUMEN

Functionally mature neural circuits are shaped during postnatal development by eliminating redundant synapses formed during the perinatal period. In the cerebellum of neonatal rodents, each Purkinje cell (PC) receives synaptic inputs from multiple (more than 4) climbing fibers (CFs). During the first 3 postnatal weeks, synaptic inputs from a single CF become markedly larger and those from the other CFs are eliminated in each PC, leading to mono-innervation of each PC by a strong CF in adulthood. While molecules involved in the strengthening and elimination of CF synapses during postnatal development are being elucidated, much less is known about the molecular mechanisms underlying CF synapse formation during the early postnatal period. Here, we show experimental evidence that suggests that a synapse organizer, PTPδ, is required for early postnatal CF synapse formation and the subsequent establishment of CF to PC synaptic wiring. We showed that PTPδ was localized at CF-PC synapses from postnatal day 0 (P0) irrespective of the expression of Aldolase C (Aldoc), a major marker of PC that distinguishes the cerebellar compartments. We found that the extension of a single strong CF along PC dendrites (CF translocation) was impaired in global PTPδ knockout (KO) mice from P12 to P29-31 predominantly in PCs that did not express Aldoc [Aldoc (-) PCs]. We also demonstrated via morphological and electrophysiological analyses that the number of CFs innervating individual PCs in PTPδ KO mice were fewer than in wild-type (WT) mice from P3 to P13 with a significant decrease in the strength of CF synaptic inputs in cerebellar anterior lobules where most PCs are Aldoc (-). Furthermore, CF-specific PTPδ-knockdown (KD) caused a reduction in the number of CFs innervating PCs with decreased CF synaptic inputs at P10-13 in anterior lobules. We found a mild impairment of motor performance in adult PTPδ KO mice. These results indicate that PTPδ acts as a presynaptic organizer for CF-PC formation and is required for normal CF-PC synaptic transmission, CF translocation, and presumably CF synapse maintenance predominantly in Aldoc (-) PCs. Furthermore, this study suggests that the impaired CF-PC synapse formation and development by the lack of PTPδ causes mild impairment of motor performance.

7.
Sci Adv ; 9(23): eade5973, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294752

RESUMEN

Human genetics strongly support the involvement of synaptopathy in psychiatric disorders. However, trans-scale causality linking synapse pathology to behavioral changes is lacking. To address this question, we examined the effects of synaptic inputs on dendrites, cells, and behaviors of mice with knockdown of SETD1A and DISC1, which are validated animal models of schizophrenia. Both models exhibited an overrepresentation of extra-large (XL) synapses, which evoked supralinear dendritic and somatic integration, resulting in increased neuronal firing. The probability of XL spines correlated negatively with working memory, and the optical prevention of XL spine generation restored working memory impairment. Furthermore, XL synapses were more abundant in the postmortem brains of patients with schizophrenia than in those of matched controls. Our findings suggest that working memory performance, a pivotal aspect of psychiatric symptoms, is shaped by distorted dendritic and somatic integration via XL spines.


Asunto(s)
Espinas Dendríticas , Esquizofrenia , Humanos , Ratones , Animales , Espinas Dendríticas/fisiología , Neuronas/fisiología , Encéfalo , Memoria a Corto Plazo/fisiología , Esquizofrenia/patología
8.
Neuroscience ; 513: 38-53, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36682446

RESUMEN

N-methyl-D-aspartate receptor (NMDAR) hypofunction during brain development is likely to contribute to the manifestation of schizophrenia (SCZ) in young adulthood. The cellular targets of NMDAR hypofunction appear to be at least in part corticolimbic fast-spiking (FS) interneurons. However, functional alterations in parvalbumin (PV)-positive FS interneurons following NMDAR hypofunction are poorly understood. Paired patch-clamp recordings from murine cortical PV interneurons and pyramidal neurons revealed that genetic deletion of NMDAR subunit Grin1 in prospective PV interneurons before the second postnatal week impaired evoked- and synchronized-GABA release. Whereas intrinsic excitability and spiking characteristics were also disturbed by Grin1 deletion, neither restoring their excitability by K+ channel blockade nor increasing extracellular Ca2+ rescued the GABA release. GABA release was also insensitive to the Cav2.1 channel antagonist ω-agatoxin IVA. Heterozygous deletion of Cacna1a gene (encoding Cav2.1) in PV interneurons produced a similar GABA release phenotype as the Grin1 mutants. Treatment with the Cav2.1/2.2 channel agonist GV-58 augmented somatic Ca2+ currents and GABA release in Cacna1a-haploinsufficient PV interneurons, but failed to enhance GABA release in the Grin1-deleted PV interneurons. Taken together, our results suggest that Grin1 deletion in prospective PV interneurons impairs proper maturation of membrane excitability and Cav2.1-recruited evoked GABA release. This may increase synaptic excitatory/inhibitory ratio in principal neurons, contributing to the emergence of SCZ-like phenotypes.


Asunto(s)
Neocórtex , Receptores de N-Metil-D-Aspartato , Animales , Ratones , Receptores de N-Metil-D-Aspartato/metabolismo , Parvalbúminas/metabolismo , Neocórtex/metabolismo , Estudios Prospectivos , Transmisión Sináptica/fisiología , Interneuronas/metabolismo , Ácido gamma-Aminobutírico
9.
Proc Natl Acad Sci U S A ; 119(37): e2122700119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067295

RESUMEN

Columnar structure is one of the most fundamental morphological features of the cerebral cortex and is thought to be the basis of information processing in higher animals. Yet, how such a topographically precise structure is formed is largely unknown. Formation of columnar projection of layer 4 (L4) axons is preceded by thalamocortical formation, in which type 1 cannabinoid receptors (CB1R) play an important role in shaping barrel-specific targeted projection by operating spike timing-dependent plasticity during development (Itami et al., J. Neurosci. 36, 7039-7054 [2016]; Kimura & Itami, J. Neurosci. 39, 3784-3791 [2019]). Right after the formation of thalamocortical projections, CB1Rs start to function at L4 axon terminals (Itami & Kimura, J. Neurosci. 32, 15000-15011 [2012]), which coincides with the timing of columnar shaping of L4 axons. Here, we show that the endocannabinoid 2-arachidonoylglycerol (2-AG) plays a crucial role in columnar shaping. We found that L4 axon projections were less organized until P12 and then became columnar after CB1Rs became functional. By contrast, the columnar organization of L4 axons was collapsed in mice genetically lacking diacylglycerol lipase α, the major enzyme for 2-AG synthesis. Intraperitoneally administered CB1R agonists shortened axon length, whereas knockout of CB1R in L4 neurons impaired columnar projection of their axons. Our results suggest that endocannabinoid signaling is crucial for shaping columnar axonal projection in the cerebral cortex.


Asunto(s)
Axones , Corteza Cerebral , Endocannabinoides , Animales , Axones/fisiología , Corteza Cerebral/crecimiento & desarrollo , Endocannabinoides/genética , Endocannabinoides/metabolismo , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones , Ratones Mutantes , Neuronas/fisiología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Corteza Somatosensorial/crecimiento & desarrollo
10.
Cells ; 11(13)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805089

RESUMEN

Group I metabotropic glutamate receptors (mGluRs) include mGluR1 and mGluR5, which are coupled to the Gq family of heterotrimeric G-proteins and readily activated by their selective agonist 3,5-dihydroxyphenilglycine (DHPG). mGluR1 and mGluR5 exhibit nearly complementary distributions spatially or temporally in the central nervous system (CNS). In adult cerebellar Purkinje cells (PCs), mGluR1 is a dominant group I mGluR and mGluR5 is undetectable. mGluR1 expression increases substantially during the first three weeks of postnatal development and remains high throughout adulthood. On the other hand, mGluR5 expression is observed during the first two postnatal weeks and then decreases. However, functional differences between mGluR1 and mGluR5 in the CNS remains to be elucidated. To address this issue, we generated "mGluR5-rescue" mice in which mGluR5 is specifically expressed in PCs in global mGluR1-knockout (KO) mice. mGluR5-rescue mice exhibited apparently normal motor coordination, developmental elimination of redundant climbing fiber (CF)-PC synapses, and delay eyeblink conditioning, which were severely impaired in mGluR1-KO mice. We concluded that mGluR5 is functionally comparable with mGluR1 in cerebellar PCs.


Asunto(s)
Células de Purkinje , Receptor del Glutamato Metabotropico 5/metabolismo , Sinapsis , Animales , Ratones , Ratones Noqueados , Células de Purkinje/fisiología , Receptores de Glutamato Metabotrópico , Sinapsis/metabolismo
11.
Cell Rep Methods ; 2(2): 100168, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35474964

RESUMEN

Genetically encoded calcium indicators (GECIs) are widely used to measure calcium transients in neuronal somata and processes, and their use enables the determination of action potential temporal series in a large population of neurons. Here, we generate a transgenic mouse line expressing a highly sensitive green GECI, G-CaMP9a, in a Flp-dependent manner in excitatory and inhibitory neuronal subpopulations downstream of a strong CAG promoter. Combining this reporter mouse with viral or mouse genetic Flp delivery methods produces a robust and stable G-CaMP9a expression in defined neuronal populations without detectable detrimental effects. In vivo two-photon imaging reveals spontaneous and sensory-evoked calcium transients in excitatory and inhibitory ensembles with cellular resolution. Our results show that this reporter line allows long-term, cell-type-specific investigation of neuronal activity with enhanced resolution in defined populations and facilitates dissecting complex dynamics of neural networks in vivo.


Asunto(s)
Calcio , Neuroimagen , Neuronas , Animales , Ratones , Potenciales de Acción , Calcio/metabolismo , Ratones Transgénicos
12.
Front Neural Circuits ; 15: 676891, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262438

RESUMEN

Neuroligin is a postsynaptic cell-adhesion molecule that is involved in synapse formation and maturation by interacting with presynaptic neurexin. Mutations in neuroligin genes, including the arginine to cystein substitution at the 451st amino acid residue (R451C) of neuroligin-3 (NLGN3), have been identified in patients with autism spectrum disorder (ASD). Functional magnetic resonance imaging and examination of post-mortem brain in ASD patients implicate alteration of cerebellar morphology and Purkinje cell (PC) loss. In the present study, we examined possible association between the R451C mutation in NLGN3 and synaptic development and function in the mouse cerebellum. In NLGN3-R451C mutant mice, the expression of NLGN3 protein in the cerebellum was reduced to about 10% of the level of wild-type mice. Elimination of redundant climbing fiber (CF) to PC synapses was impaired from postnatal day 10-15 (P10-15) in NLGN3-R451C mutant mice, but majority of PCs became mono-innervated as in wild-type mice after P16. In NLGN3-R451C mutant mice, selective strengthening of a single CF relative to the other CFs in each PC was impaired from P16, which persisted into juvenile stage. Furthermore, the inhibition to excitation (I/E) balance of synaptic inputs to PCs was elevated, and calcium transients in the soma induced by strong and weak CF inputs were reduced in NLGN3-R451C mutant mice. These results suggest that a single point mutation in NLGN3 significantly influences the synapse development and refinement in cerebellar circuitry, which might be related to the pathogenesis of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Trastorno Autístico/genética , Moléculas de Adhesión Celular Neuronal , Cerebelo , Humanos , Proteínas de la Membrana , Ratones , Mutación/genética , Proteínas del Tejido Nervioso , Células de Purkinje , Sinapsis
13.
Redox Biol ; 45: 102057, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34198071

RESUMEN

Methylglyoxal (MG) is a reactive and cytotoxic α-dicarbonyl byproduct of glycolysis. Our bodies have several bio-defense systems to detoxify MG, including an enzymatic system by glyoxalase (GLO) 1 and GLO2. We identified a subtype of schizophrenia patients with novel mutations in the GLO1 gene that results in reductions of enzymatic activity. Moreover, we found that vitamin B6 (VB6) levels in peripheral blood of the schizophrenia patients with GLO1 dysfunction are significantly lower than that of healthy controls. However, the effects of GLO1 dysfunction and VB6 deficiency on the pathophysiology of schizophrenia remains poorly understood. Here, we generated a novel mouse model for this subgroup of schizophrenia patients by feeding Glo1 knockout mice VB6-deficent diets (KO/VB6(-)) and evaluated the combined effects of GLO1 dysfunction and VB6 deficiency on brain function. KO/VB6(-) mice accumulated homocysteine in plasma and MG in the prefrontal cortex (PFC), hippocampus, and striatum, and displayed behavioral deficits, such as impairments of social interaction and cognitive memory and a sensorimotor deficit in the prepulse inhibition test. Furthermore, we found aberrant gene expression related to mitochondria function in the PFC of the KO/VB6(-) mice by RNA-sequencing and weighted gene co-expression network analysis (WGCNA). Finally, we demonstrated abnormal mitochondrial respiratory function and subsequently enhanced oxidative stress in the PFC of KO/VB6(-) mice in the PFC. These findings suggest that the combination of GLO1 dysfunction and VB6 deficiency may cause the observed behavioral deficits via mitochondrial dysfunction and oxidative stress in the PFC.


Asunto(s)
Lactoilglutatión Liasa , Esquizofrenia , Deficiencia de Vitamina B 6 , Animales , Humanos , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Corteza Prefrontal/metabolismo , Esquizofrenia/genética
14.
Anal Biochem ; 629: 114316, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34314725

RESUMEN

Carbon fiber and carbon fiber disc microelectrodes are widely used for electrochemical detection of biochemicals released from cells. However, fabricating these types of microelectrodes is difficult and time-consuming. Here, we report an easy-to-fabricate, carbon powder-filled microelectrode consisting of a pulled glass capillary backfilled with carbon powder. Carbon tip size and responsiveness can be controlled by adjusting the settings of the puller. Carbon powder-filled microelectrodes with tip opening diameters of 7-24 µm detected sub-micromolar to sub-millimolar levels of dopamine and catecholamines released from PC-12 cells. This simple microelectrode should promote further work on cellular and tissue electrochemistry.


Asunto(s)
Carbono/química , Polvos/química , Catecolaminas/análisis , Catecolaminas/metabolismo , Línea Celular , Dopamina/análisis , Dopamina/metabolismo , Técnicas Electroquímicas , Humanos , Microelectrodos , Neurotransmisores/análisis , Neurotransmisores/metabolismo
15.
Neuropharmacology ; 194: 108629, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34089728

RESUMEN

The cerebellum is essential for the control, coordination, and learning of movements, and for certain aspects of cognitive function. Purkinje cells are the sole output neurons in the cerebellar cortex and therefore play crucial roles in the diverse functions of the cerebellum. The type 1 metabotropic glutamate receptor (mGluR1) is prominently enriched in Purkinje cells and triggers downstream signaling pathways that are required for functional and structural plasticity, and for synaptic responses. To understand how mGluR1 contributes to cerebellar functions, it is important to consider not only the operational properties of this receptor, but also its spatial organization and the molecular interactions that enable its proper functioning. In this review, we highlight how mGluR1 and its related signaling molecules are organized into tightly coupled microdomains to fulfill physiological functions. We also describe emerging evidence that altered mGluR1 signaling in Purkinje cells underlies cerebellar dysfunction in ataxias of human patients and mouse models.


Asunto(s)
Cerebelo/metabolismo , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Transducción de Señal , Sinapsis/metabolismo , Sinapsis/ultraestructura
16.
STAR Protoc ; 2(2): 100469, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33937875

RESUMEN

Here, we present a comprehensive protocol to analyze the roles of disease-related genes in synaptic transmission. We have developed a pipeline of electrophysiological techniques and combined these with optogenetics in the medial prefrontal cortex of mice. This methodology provides a cost-effective, faster, and easier screening approach to elucidate functional aspects of single genes in several regions in the mouse brain such as a specific layer of the mPFC. For complete details on the use and execution of this protocol, please refer to Nagahama et al. (2020) and Sacai et al. (2020).


Asunto(s)
Vías Nerviosas/metabolismo , Optogenética , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Transmisión Sináptica , Animales , Ratones
17.
Comput Struct Biotechnol J ; 19: 2477-2485, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025938

RESUMEN

Gene manipulation is a useful approach for understanding functions of genes and is important for investigating basic mechanisms of brain function on the level of single neurons and circuits. Despite the development and the wide range of applications of CRISPR-Cas9 and base editors (BEs), their implementation for an analysis of individual neurons in vivo remained limited. In fact, conventional gene manipulations are generally achieved only on the population level. Here, we combined either CRISPR-Cas9 or BEs with the targeted single-cell electroporation technique as a proof-of-concept test for gene manipulation in single neurons in vivo. Our assay consisted of CRISPR-Cas9- or BEs-induced gene knockout in single Purkinje cells in the cerebellum. Our results demonstrate the feasibility of both gene editing and base editing in single cells in the intact brain, providing a tool through which molecular perturbations of individual neurons can be used for analysis of circuits and, ultimately, behaviors.

19.
STAR Protoc ; 2(1): 100238, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33458703

RESUMEN

Adult-born neurons (ABNs) in the dentate gyrus bestow unique cellular plasticity to the mammalian brain. We recently found that the activity of ABNs during sleep is necessary for memory consolidation. Here, we describe our method for Ca2+ imaging of ABN activity using a miniaturized fluorescent microscope and sleep recordings. As preparatory surgery and post-recording data processing can be major obstacles, we provide detailed descriptions and problem-solving tips. For complete details on the use and execution of this protocol, please refer to Kumar et al. (2020).


Asunto(s)
Señalización del Calcio , Giro Dentado/metabolismo , Hipocampo/metabolismo , Microscopía Intravital , Neuronas/metabolismo , Animales , Ratones , Microscopía Fluorescente
20.
Neuroscience ; 462: 36-43, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32360594

RESUMEN

In the cerebellum of neonatal mice, multiple climbing fibers (CFs) form excitatory synapses on each Purkinje cell (PC). Only one CF is strengthened in each PC from postnatal day 3 (P3) to P7, whereas the other weaker CFs are eliminated progressively from ∼P7 to ∼P11 (early phase of CF elimination) and from ∼P12 to ∼P17 (late phase of CF elimination). Type 1 metabotropic glutamate receptor (mGluR1) triggers a canonical pathway in PCs for the late phase of CF elimination. Among downstream signaling molecules of mGluR1, phospholipase C ß3 (PLCß3) and ß4 (PLCß4) are expressed complementarily in PCs of aldolase C (Aldoc)-positive (+) and Aldoc-negative (-) cerebellar compartments, respectively. PLCß4 is reported to mediate the late phase of CF elimination in the anterior half of the cerebellar vermis which corresponds to the Aldoc (-) region. However, roles of PLCß3 and Aldoc in CF synapse elimination are unknown. Here, we investigated CF innervation of PCs in Aldoc-tdTomato knock-in mice that underwent lentivirus-mediated knockdown (KD) of PLCß3 in PCs during postnatal development. By recording CF-mediated excitatory postsynaptic currents from PCs and immunostaining CF synaptic terminals, we found that significantly higher percentage of PCs with PLCß3-KD remained multiply innervated by CFs in Aldoc (+) compartments after P12, which was accompanied by impaired elimination of somatic CF synapses and reduced dendritic CF translocation. In contrast, deletion of Aldoc had no effect on CF synapse elimination. These results suggest that PLCß3 is required for the late phase of CF elimination in Aldoc (+) PCs.


Asunto(s)
Fructosa-Bifosfato Aldolasa , Fibras Nerviosas , Animales , Cerebelo , Ratones , Fosfolipasa C beta , Células de Purkinje , Sinapsis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA