RESUMEN
Disuse muscle atrophy occurs consequent to prolonged limb immobility or bed rest, which represents an unmet medical need. As existing animal models of limb immobilization often cause skin erosion, edema, and other untoward effects, we here report an alternative method via thermoplastic immobilization of hindlimbs in mice. While significant decreases in the weight and fiber size were noted after 7 days of immobilization, no apparent skin erosion or edema was found. To shed light onto the molecular mechanism underlying this muscle wasting, we performed the next-generation sequencing analysis of gastrocnemius muscles from immobilized versus non-mobilized legs. Among a total of 55,487 genes analyzed, 787 genes were differentially expressed (> fourfold; 454 and 333 genes up- and down-regulated, respectively), which included genes associated with muscle tissue development, muscle system process, protein digestion and absorption, and inflammation-related signaling. From a clinical perspective, this model may help understand the molecular/cellular mechanism that drives muscle disuse and identify therapeutic strategies for this debilitating disease.
Asunto(s)
Músculo Esquelético , Trastornos Musculares Atróficos , Humanos , Ratones , Animales , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Trastornos Musculares Atróficos/genética , Trastornos Musculares Atróficos/patología , Miembro Posterior/metabolismo , Edema/patologíaRESUMEN
The role of serum uric acid (SUA) in the role of advanced fibrosis is not fully explored. The study assesses the risk of advanced fibrosis according to SUA in an Asian population with a total of 3612 subjects enrolled in one health management center between 2006 and 2008. The fibrosis-4 score was used for the prediction of the high risk of advanced fibrosis. SUA scores higher than 7.6 mg/dL in men and 6.6 mg/dL in women were defined as hyperuricemia. A proportional odds model was used to assess cumulative risks of advanced fibrosis. The prevalence of high risk of advanced fibrosis was 2.5% in the hyperuricemia group and 0.6% in the normal SUA group (p < 0.001). After adjustment for confounding factors, the odds ratios (OR) for more severe advanced fibrosis were 1.37 (95% confidence interval [CI]: 1.07−1.78) in the hyperuricemia group. Hyperuricemia only increased the risk of advanced fibrosis in the non-T2DM group (OR, 1.29; 95% CI, 1.04 to 1.74) instead of T2DM group (OR, 1.85; 95% CI, 0.97 to 3.53). SUA is a risk factor for a higher risk of advanced fibrosis, with the disease likely progressing from a steatotic to a fibrotic picture. The focus should be more emphasized in non-T2DM groups.
RESUMEN
BACKGROUND: Despite recent advances in understanding the pathophysiology of cancer cachexia, prevention/treatment of this debilitating disease remains an unmet medical need. METHODS: We developed an integrated, multi-tiered strategy involving both in vitro and in vivo muscle atrophy platforms to identify traditional Chinese medicine (TCM)-based anti-cachectic agents. In the initial screening, we used inflammatory cytokine-induced atrophy of C2C12 myotubes as a phenotypic screening platform to assess the protective effects of TCMs. The selected TCMs were then evaluated for their abilities to protect Caenorhabditis elegans from age-related reduction of mobility and contractility, followed by the C-26 colon adenocarcinoma mouse model of cachexia to confirm the anti-muscle atrophy effects (body/skeletal muscle weights, fibre size distribution, grip strengths, and serum IL-6). Transcriptome analysis, quantitative real-time polymerase chain reaction, and immunoblotting were performed to gain understanding of the potential mechanism(s) by which effective TCM protected against C26 tumour-induced muscle atrophy. RESULTS: Of 29 widely used TCMs, Dioscorea radix (DR) and Mu Dan Pi (MDP) showed a complete protection (all P values, 0.0002) vis-à-vis C26 conditioned medium control in the myotube atrophy platform. MDP exhibited a unique ability to ameliorate age-associated decreases in worm mobility, accompanied by improved total body contractions, relative to control (P < 0.0001 and <0.01, respectively), which, however, was not noted with DR. This differential in vivo protective effect between MDP and DR was also confirmed in the C-26 mouse model. MDP at 1000 mg/kg (MDP-H) was effective in protecting body weight loss (P < 0.05) in C-26 tumour-bearing mice without changing food or water intake, accompanied by the restoration of the fibre size distribution of hindleg skeletal muscles (P < 0.0001) and the forelimb grip strength (P < 0.05). MDP-treated C-26-tumour-bearing mice were alert, showed normal posture and better body conditions, and exhibited lower serum IL-6 levels (P = 0.06) relative to vehicle control. This decreased serum IL-6 was associated with the in vitro suppressive effect of MDP (25 and 50 µg/mL) on IL-6 secretion into culture medium by C26 cells. RNA-seq analysis, followed by quantitative real-time polymerase chain reaction and/or immunoblotting, shows that MDP's anti-cachectic effect was attributable to its ability to reverse the C-26 tumour-induced re-programming of muscle homoeostasis-associated gene expression, including that of two cachexia drivers (MuRF1 and Atrogin-1), in skeletal muscles. CONCLUSIONS: All these findings suggest the translational potential of MDP to foster new strategies for the prevention and/or treatment of cachexia. The protective effect of MDP on other types of muscle atrophy such as sarcopenia might warrant investigations.
Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Adenocarcinoma/patología , Animales , Caquexia/etiología , Caquexia/genética , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Modelos Animales de Enfermedad , Interleucina-6 , Medicina Tradicional China , Ratones , Atrofia Muscular/patologíaRESUMEN
OBJECTIVES: Moderate-intensity exercise improves insulin sensitivity, which may depend on the intensity, duration, and frequency of exercise. We examined the effects of a single bout of short-duration high-intensity exercise (HIE) and long-duration lowintensity exercise (LIE) on insulin sensitivity and the adiponectin/leptin ratio in individuals with different body mass indices (BMIs) who do not exercise regularly. METHODS: We enrolled 42 healthy volunteers aged 20-64 years and divided them into two groups based on BMI: BMI <24 kg/m2 and BMI ≥27 kg/m2. They were randomly assigned to either the short-duration (20 min) HIE (70%-80% heart rate reserve, HRR) or long-duration (60 min) LIE training groups (30%-40% HRR). Glucose, insulin, adiponectin, and leptin levels were assessed before training and at 0, 30, 60, and 120 min after training. RESULTS: We finally analyzed 27 normal weight and 9 obese individuals. No significant differences were observed in the baseline information of both BMI groups. Homeostatic model assessment for insulin resistance significantly improved for both exercise patterns in the normal weight group and for the HIE pattern in the obese group (P < 0.01), whereas the adiponectin/leptin ratio increased significantly only among normal weight participants with the LIE intervention. CONCLUSION: Both exercise patterns in BMI <24 kg/m2 and BMI ≥27 kg/m2 benefit on insulin resistance. Therefore, people can choose the way they can fit to improve insulin resistance both short-duration high-intensity exercise and long-duration low-intensity exercise.