Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Steroid Biochem Mol Biol ; : 106585, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019196

RESUMEN

Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. Recent studies have suggested a potential role for steroid synthesis in AD pathology. This study investigated the co-localization of steroidogenic enzymes in neuronal cells, changes in enzyme expression in an AD mouse model, and steroid expressions in human AD samples. Additionally, we conducted a steroidomic metabolomics analysis and evaluated the effects of dehydroepiandrosterone sulfate (DHEAS) treatment in an AD mouse model. Immunofluorescence analysis revealed significant co-localization of cytochrome P450 family 17 subfamily A member 1 (CYP17A1) and steroidogenic acute regulatory protein (StAR) proteins with α-synuclein in presynaptic neurons, suggesting active steroid synthesis in these cells. Conversely, such co-localization was absent in astrocytes. In the AD mouse model, a marked decrease in the expression of steroidogenic enzymes (Cyp11a1, Cyp17a1, Star) was observed, especially in areas with amyloid beta plaque accumulation. Human AD and MS brain tissues showed similar reductions in StAR and CYP17A1 expressions. Steroidomic analysis indicated a downregulation of key steroids in the serum of AD patients. DHEAS treatment in AD mice resulted in improved cognitive function and reduced Aß accumulation. Our findings indicate a neuron-specific pathway for steroid synthesis, potentially playing a crucial role in AD pathology. The reduction in steroidogenic enzymes and key steroids in AD models and human samples suggests that impaired steroid synthesis is a feature of neurodegenerative diseases. The therapeutic potential of targeting steroid synthesis pathways, as indicated by the positive effects of DHEAS treatment, warrants further investigation.

2.
Lipids Health Dis ; 22(1): 114, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537607

RESUMEN

Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with limited treatment options, such as the chemotherapeutic agent, temozolomide (TMZ). However, many GBM tumors develop resistance to TMZ, which is a major obstacle to effective therapy. Recently, dysregulated lipid metabolism has emerged as an important factor contributing to TMZ resistance in GBM. The dysregulation of lipid metabolism is a hallmark of cancer and alterations in lipid metabolism have been linked to multiple aspects of tumor biology, including proliferation, migration, and resistance to therapy. In this review, we aimed to summarize current knowledge on lipid metabolism in TMZ-resistant GBM, including key metabolites and proteins involved in lipid synthesis, uptake, and utilization, and recent advances in the application of metabolomics to study lipid metabolism in GBM. We also discussed the potential of lipid metabolism as a target for novel therapeutic interventions. Finally, we highlighted the challenges and opportunities associated with developing these interventions for clinical use, and the need for further research to fully understand the role of lipid metabolism in TMZ resistance in GBM. Our review suggests that targeting dysregulated lipid metabolism may be a promising approach to overcome TMZ resistance and improve outcomes in patients with GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Metabolismo de los Lípidos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Resistencia a Antineoplásicos , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Nat Biomed Eng ; 6(6): 683-705, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35361935

RESUMEN

Peripheral neurons that sense glucose relay signals of glucose availability to integrative clusters of neurons in the brain. However, the roles of such signalling pathways in the maintenance of glucose homoeostasis and their contribution to disease are unknown. Here we show that the selective activation of the nerve plexus of the hepatic portal system via peripheral focused ultrasound stimulation (pFUS) improves glucose homoeostasis in mice and rats with insulin-resistant diabetes and in swine subject to hyperinsulinemic-euglycaemic clamps. pFUS modulated the activity of sensory projections to the hypothalamus, altered the concentrations of metabolism-regulating neurotransmitters, and enhanced glucose tolerance and utilization in the three species, whereas physical transection or chemical blocking of the liver-brain nerve pathway abolished the effect of pFUS on glucose tolerance. Longitudinal multi-omic profiling of metabolic tissues from the treated animals confirmed pFUS-induced modifications of key metabolic functions in liver, pancreas, muscle, adipose, kidney and intestinal tissues. Non-invasive ultrasound activation of afferent autonomic nerves may represent a non-pharmacologic therapy for the restoration of glucose homoeostasis in type-2 diabetes and other metabolic diseases.


Asunto(s)
Diabetes Mellitus Experimental , Glucosa , Animales , Diabetes Mellitus Experimental/terapia , Glucosa/metabolismo , Homeostasis , Hipotálamo/metabolismo , Hígado/metabolismo , Ratones , Ratas , Porcinos
4.
J Biomed Sci ; 29(1): 21, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35337344

RESUMEN

BACKGROUND: Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. METHODS: RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. RESULTS: Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid ß-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. CONCLUSION: Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM.


Asunto(s)
Glioblastoma , Apoptosis/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Ácidos Grasos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Mitocondrias , Temozolomida/farmacología
5.
J Steroid Biochem Mol Biol ; 219: 106067, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114375

RESUMEN

Allopregnanolone (allo) is a physiological regulator of neuronal activity that treats multiple neurological disorders. Allo penetrates the blood-brain barrier with very high efficiency, implying that allo can treat CNS-related diseases, including glioblastoma (GBM), which always recurs after standard therapy. Hence, this study aimed to determine whether allo has a therapeutic effect on GBM. We found that allo enhanced temozolomide (TMZ)-suppressed cell survival and proliferation of TMZ-resistant cells. In particular, allo enhanced TMZ-inhibited cell migration and TMZ-induced apoptosis. Additionally, allo strongly induced DNA damage characterized by γH2Ax. Furthermore, quantitative proteomic analysis, iTRAQ, showed that allo significantly decreased the levels of DPYSL3, S100A11, and S100A4, reflecting the poor prognosis of patients with GBM confirmed by differential gene expression and survival analysis. Moreover, single-cell RNA-Seq revealed that S100A11, expressed in malignant cells, oligodendrocytes, and macrophages, was significantly associated with immune cell infiltration. Furthermore, overexpression of DPYSL3 or S100A11 prevented allo-induced cell death. In conclusion, allo suppresses GBM cell survival by decreasing DPYSL3/S100A11 expression and inducing DNA damage.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Proteínas Musculares , Pregnanolona , Proteínas S100 , Antineoplásicos Alquilantes , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/biosíntesis , Recurrencia Local de Neoplasia , Pregnanolona/farmacología , Proteómica , Proteínas S100/antagonistas & inhibidores , Proteínas S100/biosíntesis , Temozolomida/farmacología
6.
Neurosci Res ; 176: 31-39, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34687812

RESUMEN

During the neural circuit formation, neuronal growth cones must be guided precisely to their neuronal or muscle targets, which can be achieved by the activation of membrane-bound guidance receptors at the periphery. However, the mechanisms that regulate the temporal availability of these receptors remain largely unknown. TAR DNA binding protein-43 (TDP-43) has been proposed to bind with the mRNAs of guidance receptors, thus prompting us to investigate its role in axon guidance of the spinal lateral motor column (LMC) neurons into the limb mesenchyme. We first identified the TDP-43 expression in the LMC neurons at the stage of axons growth into the limb using in situ mRNA hybridization. The loss and gain of TDP-43 function in chick LMC neurons redirected their axon trajectory with opposite effects. In mice, a spinal motor neuron-specific TDP-43 deletion led to the misrouting of LMC axons. Further, ectopic TDP-43 expression increased EphB protein levels in LMC neurons, suggesting that TDP-43 mediates LMC pathfinding by regulating EphB expression. Finally, TDP-43 levels influenced the growth preference of LMC neurites against ephrin-B, but not Netrin-1 and Semaphorin ligands. Our results demonstrate that TDP-43 is essential for the ephrinB:EphB signaling-mediated axon trajectory selection of LMC subtypes into the limb.


Asunto(s)
Axones , Proteínas de Unión al ADN , Receptores de la Familia Eph , Animales , Axones/metabolismo , Proteínas de Unión al ADN/metabolismo , Efrinas/genética , Efrinas/metabolismo , Ratones , Neuronas Motoras/metabolismo , Receptores de la Familia Eph/metabolismo , Médula Espinal/metabolismo
7.
Dev Dyn ; 251(3): 444-458, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34374463

RESUMEN

BACKGROUND: Proper guidance of neuronal axons to their targets is required to assemble neural circuits during the development of the nervous system. However, the mechanism by which the guidance of axonal growth cones is regulated by specific intermediaries activated by receptor signaling pathways to mediate cytoskeleton dynamics is unclear. Vav protein members have been proposed to mediate this process, prompting us to investigate their role in the limb selection of the axon trajectory of spinal lateral motor column (LMC) neurons. RESULTS: We found Vav2 and Vav3 expression in LMC neurons when motor axons grew into the limb. Vav2, but not Vav3, loss-of-function perturbed LMC pathfinding, while Vav2 gain-of-function exhibited the opposite effects, demonstrating that Vav2 plays an important role in motor axon growth. Vav2 knockdown also attenuated the redirectional phenotype of LMC axons induced by Dcc, but not EphA4, in vivo and lateral LMC neurite growth preference to Netrin-1 in vitro. This study showed that Vav2 knockdown and ectopic nonphosphorylable Vav2 mutant expression abolished the Src-induced stronger growth preference of lateral LMC neurites to Netrin-1, suggesting that Vav2 is downstream of Src in this context. CONCLUSIONS: Vav2 is essential for Netrin-1-regulated LMC motor axon pathfinding through Src interaction.


Asunto(s)
Orientación del Axón , Conos de Crecimiento , Netrina-1 , Proteínas Proto-Oncogénicas c-vav , Animales , Orientación del Axón/fisiología , Axones/fisiología , Conos de Crecimiento/fisiología , Neuronas Motoras/fisiología , Netrina-1/fisiología , Proteínas Proto-Oncogénicas c-vav/fisiología
8.
Front Surg ; 9: 989372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36632522

RESUMEN

Background: Oblique lateral interbody fusion (OLIF) is a type of minimally invasive lateral lumbar interbody fusion technique used for treating lumbar degenerative diseases. This study aimed to analyze the clinical and radiographic efficacy of OLIF with anterolateral screw fixation alone and OLIF requiring fixation with conventional posterior percutaneous pedicle screws for lumbar diseases. Methods: Medical records of consecutive patients admitted to Cheng-Hsin Hospital who received OLIF between January 2019 and December 2020 were retrospectively reviewed. Patients were divided into two groups by screw fixation: patients who received anterolateral screw fixation alone were defined as one-stage OLIF (n = 9) and patients who received fixation with conventional posterior percutaneous pedicle screw were defined as two-stage OLIF (n = 16). Patient clinical characteristics, medical history, intraoperative blood loss, length of hospital stay, peri-operative, and post-operative complications were evaluated in all patients. Results: During the study period, a total of 25 patients were successfully treated with OLIF (n = 9 one-stage; n = 16 two-stage). Two-stage OLIF was associated with longer operation times, longer hospital stays, shorter bed-rest time, and a greater likelihood of having a blood transfusion compared with the one-stage OLIF group. A higher proportion of grade I subsidence was observed at 6 months and 1 year after surgery in the two-stage group compared with the one-stage group. Post-operative complications included ileus, dystonia, and dystonia were higher in the two-stage OLIF group. Improvements in radiographic parameters were demonstrated after OLIF, and the improvements were comparable between one-stage and two-stage OLIF. Conclusions: One-stage OLIF is a feasible and efficacious treatment method for single- and multiple-level degenerative lumbar diseases. Additional clinical follow-up is necessary to confirm long-term outcomes.

9.
Diagnostics (Basel) ; 11(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34943457

RESUMEN

The complexity of breast cancer includes many interacting biological processes, and proteasome alpha (PSMA) subunits are reported to be involved in many cancerous diseases, although the transcriptomic expression of this gene family in breast cancer still needs to be more thoroughly investigated. Consequently, we used a holistic bioinformatics approach to study the PSMA genes involved in breast cancer by integrating several well-established high-throughput databases and tools, such as cBioPortal, Oncomine, and the Kaplan-Meier plotter. Additionally, correlations of breast cancer patient survival and PSMA messenger RNA expressions were also studied. The results demonstrated that breast cancer tissues had higher expression levels of PSMA genes compared to normal breast tissues. Furthermore, PSMA2, PSMA3, PSMA4, PSMA6, and PSMA7 showed high expression levels, which were correlated with poor survival of breast cancer patients. In contrast, PSMA5 and PSMA8 had high expression levels, which were associated with good prognoses. We also found that PSMA family genes were positively correlated with the cell cycle, ubiquinone metabolism, oxidative stress, and immune response signaling, including antigen presentation by major histocompatibility class, interferon-gamma, and the cluster of differentiation signaling. Collectively, these findings suggest that PSMA genes have the potential to serve as novel biomarkers and therapeutic targets for breast cancer. Nevertheless, the bioinformatic results from the present study would be strengthened with experimental validation in the future by prospective studies on the underlying biological mechanisms of PSMA genes and breast cancer.

11.
Aging (Albany NY) ; 13(22): 24882-24913, 2021 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-34839279

RESUMEN

The complexity of breast cancer includes many interacting biological processes that make it difficult to find appropriate therapeutic treatments. Therefore, identifying potential diagnostic and prognostic biomarkers is urgently needed. Previous studies demonstrated that 26S proteasome delta subunit, non-ATPase (PSMD) family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcriptional expressions of PSMD family genes in breast cancer still remain largely unexplored. Consequently, we used a holistic bioinformatics approach to explore PSMD genes involved in breast cancer patients by integrating several high-throughput databases, including The Cancer Genome Atlas (TCGA), cBioPortal, Oncomine, and Kaplan-Meier plotter. These data demonstrated that PSMD1, PSMD2, PSMD3, PSMD7, PSMD10, PSMD12, and PSMD14 were expressed at significantly higher levels in breast cancer tissue compared to normal tissues. Notably, the increased expressions of PSMD family genes were correlated with poor prognoses of breast cancer patients, which suggests their roles in tumorigenesis. Meanwhile, network and pathway analyses also indicated that PSMD family genes were positively correlated with ubiquinone metabolism, immune system, and cell-cycle regulatory pathways. Collectively, this study revealed that PSMD family members are potential prognostic biomarkers for breast cancer progression and possible promising clinical therapeutic targets.


Asunto(s)
Neoplasias de la Mama , Complejo de la Endopetidasa Proteasomal/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Humanos , Pronóstico , Complejo de la Endopetidasa Proteasomal/metabolismo , Transcriptoma/genética , Transcriptoma/inmunología
12.
Biomedicines ; 9(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34680577

RESUMEN

Colorectal cancer (CRC) is one of the world's leading causes of cancer-related deaths; thus, it is important to detect it as early as possible. Obesity is thought to be linked to a large rise in the CRC incidence as a result of bad dietary choices, such as a high intake of animal fats. Fatty acid-binding proteins (FABPs) are a set of molecules that coordinate intracellular lipid responses and are highly associated with metabolism and inflammatory pathways. There are nine types of FABP genes that have been found in mammals, which are FABP1-7, FABP9, and FABP12. Each FABP gene has its own roles in different organs of the body; hence, each one has different expression levels in different cancers. The roles of FABP family genes in the development of CRC are still poorly understood. We used a bioinformatics approach to examine FABP family gene expression profiles using the Oncomine, GEPIA, PrognoScan, STRING, cBioPortal, MetaCore, and TIMER platforms. Results showed that the FABP6 messenger (m)RNA level is overexpressed in CRC cells compared to normal cells. The overexpression of FABP6 was found to be related to poor prognosis in CRC patients' overall survival. The immunohistochemical results in the Human Protein Atlas showed that FABP1 and FABP6 exhibited strong staining in CRC tissues. An enrichment analysis showed that high expression of FABP6 was significantly correlated with the role of microRNAs in cell proliferation in the development of CRC through the insulin-like growth factor (IGF) signaling pathway. FABP6 functions as an intracellular bile-acid transporter in the ileal epithelium. We looked at FABP6 expression in CRC since bile acids are important in the carcinogenesis of CRC. In conclusion, high FABP6 expression is expected to be a potential biomarker for detecting CRC at the early stage.

13.
Cell Death Dis ; 12(10): 884, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584069

RESUMEN

DNA repair promotes the progression and recurrence of glioblastoma (GBM). However, there remain no effective therapies for targeting the DNA damage response and repair (DDR) pathway in the clinical setting. Thus, we aimed to conduct a comprehensive analysis of DDR genes in GBM specimens to understand the molecular mechanisms underlying treatment resistance. Herein, transcriptomic analysis of 177 well-defined DDR genes was performed with normal and GBM specimens (n = 137) from The Cancer Genome Atlas and further integrated with the expression profiling of histone deacetylase 6 (HDAC6) inhibition in temozolomide (TMZ)-resistant GBM cells and patient-derived tumor cells. The effects of HDAC6 inhibition on DDR signaling were examined both in vitro and intracranial mouse models. We found that the expression of DDR genes, involved in repair pathways for DNA double-strand breaks, was upregulated in highly malignant primary and recurrent brain tumors, and their expression was related to abnormal clinical features. However, a potent HDAC6 inhibitor, MPT0B291, attenuated the expression of these genes, including RAD51 and CHEK1, and was more effective in blocking homologous recombination repair in GBM cells. Interestingly, it resulted in lower cytotoxicity in primary glial cells than other HDAC6 inhibitors. MPT0B291 reduced the growth of both TMZ-sensitive and TMZ-resistant tumor cells and prolonged survival in mouse models of GBM. We verified that HDAC6 regulated DDR genes by affecting Sp1 expression, which abolished MPT0B291-induced DNA damage. Our findings uncover a regulatory network among HDAC6, Sp1, and DDR genes for drug resistance and survival of GBM cells. Furthermore, MPT0B291 may serve as a potential lead compound for GBM therapy.


Asunto(s)
Daño del ADN , Glioblastoma/enzimología , Glioblastoma/patología , Histona Desacetilasa 6/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Daño del ADN/genética , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Histona Desacetilasa 6/antagonistas & inhibidores , Humanos , Indoles , Masculino , Ratones Endogámicos NOD , Proteínas de Neoplasias/metabolismo , Neuroglía/metabolismo , Piridinas , Temozolomida/farmacología
14.
Diagnostics (Basel) ; 11(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359286

RESUMEN

Breast cancer is a heterogeneous disease involving complex interactions of biological processes; thus, it is important to develop therapeutic biomarkers for treatment. Members of the dipeptidyl peptidase (DPP) family are metalloproteases that specifically cleave dipeptides. This family comprises seven members, including DPP3, DPP4, DPP6, DPP7, DPP8, DPP9, and DPP10; however, information on the involvement of DPPs in breast cancer is lacking in the literature. As such, we aimed to study their roles in this cancerous disease using publicly available databases such as cBioportal, Oncomine, and Kaplan-Meier Plotter. These databases comprise comprehensive high-throughput transcriptomic profiles of breast cancer across multiple datasets. Furthermore, together with investigating the messenger RNA expression levels of these genes, we also aimed to correlate these expression levels with breast cancer patient survival. The results showed that DPP3 and DPP9 had significantly high expression profiles in breast cancer tissues relative to normal breast tissues. High expression levels of DPP3 and DPP4 were associated with poor survival of breast cancer patients, whereas high expression levels of DPP6, DPP7, DPP8, and DPP9 were associated with good prognoses. Additionally, positive correlations were also revealed of DPP family genes with the cell cycle, transforming growth factor (TGF)-beta, kappa-type opioid receptor, and immune response signaling, such as interleukin (IL)-4, IL6, IL-17, tumor necrosis factor (TNF), and interferon (IFN)-alpha/beta. Collectively, DPP family members, especially DPP3, may serve as essential prognostic biomarkers in breast cancer.

15.
Respir Physiol Neurobiol ; 294: 103773, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400355

RESUMEN

The effect of mechanical insufflation-exsufflation (MIE) for airway clearance in patients with spinal muscular atrophy type I (SMA-I) on the distribution of ventilation in the lung is unknown, as is the duration of its beneficial effects. A pilot study to investigate the feasibility of using three dimensional (3-D) electrical impedance tomography (EIT) images to estimate lung volumes pre- and post-MIE for assessing the effectiveness of mechanical insufflation-exsufflation (MIE) was conducted in 6 pediatric patients with SMA-I in the neuromuscular clinic at Children's Hospital Colorado. EIT data were collected before, during, and after the MIE procedure on two rows of 16 electrodes placed around the chest. Lung volumes were computed from the images and compared before, during, and after the MIE procedure to assess the ability of EIT to estimate changes in lung volume during insufflation and exsufflation. Images of pulsatile pulmonary perfusion were computed in subjects able to perform breath-holding. In four of the six subjects, lung volumes during tidal breathing increased after MIE (average change from pre to post MIE was 58.8±55.1 mL). The time-dependent plots of lung volume computed from the EIT data clearly show when the MIE device insufflates and exsufflates air and the rest periods between mechanical coughs. Images of pulmonary pulsatile perfusion were computed from data collected during breathing pauses. The results suggest that EIT holds promise for estimating lung volumes and ventilation/perfusion mismatch, both of which are useful for assessing the effectiveness of MIE in clearing mucus plugs.


Asunto(s)
Obstrucción de las Vías Aéreas/terapia , Insuflación , Ventilación Pulmonar/fisiología , Atrofias Musculares Espinales de la Infancia/diagnóstico por imagen , Atrofias Musculares Espinales de la Infancia/terapia , Niño , Impedancia Eléctrica , Estudios de Factibilidad , Humanos , Mediciones del Volumen Pulmonar , Proyectos Piloto , Atrofias Musculares Espinales de la Infancia/fisiopatología , Tomografía
16.
Aging (Albany NY) ; 13(14): 17970, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34329194

RESUMEN

Breast cancer is a complex disease, and several processes are involved in its development. Therefore, potential therapeutic targets need to be discovered for these patients. Proteasome 26S subunit, ATPase gene (PSMC) family members are well reported to be involved in protein degradation. However, their roles in breast cancer are still unknown and need to be comprehensively researched. Leveraging publicly available databases, such as cBioPortal and Oncomine, for high-throughput transcriptomic profiling to provide evidence-based targets for breast cancer is a rapid and robust approach. By integrating the aforementioned databases with the Kaplan-Meier plotter database, we investigated potential roles of six PSMC family members in breast cancer at the messenger RNA level and their correlations with patient survival. The present findings showed significantly higher expression profiles of PSMC2, PSMC3, PSMC4, PSMC5, and PSMC6 in breast cancer compared to normal breast tissues. Besides, positive correlations were also revealed between PSMC family genes and ubiquinone metabolism, cell cycle, and cytoskeletal remodeling. Meanwhile, we discovered that high levels of PSMC1, PSMC3, PSMC4, PSMC5, and PSMC6 transcripts were positively correlated with poor survival, which likely shows their importance in breast cancer development. Collectively, PSMC family members have the potential to be novel and essential prognostic biomarkers for breast cancer development.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Conjuntos de Datos como Asunto , Supervivencia sin Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Pronóstico , ARN Mensajero/genética
17.
Redox Biol ; 46: 102067, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34315111

RESUMEN

Traumatic brain injury (TBI) is a prevalent head injury worldwide which increases the risk of neurodegenerative diseases. Increased reactive oxygen species (ROS) and inflammatory chemokines after TBI induces secondary effects which damage neurons. Targeting NADPH oxidase or increasing redox systems are ways to reduce ROS and damage. Earlier studies show that C-C motif chemokine ligand 5 (CCL5) has neurotrophic functions such as promoting neurite outgrowth as well as reducing apoptosis. Although CCL5 levels in blood are associated with severity in TBI patients, the function of CCL5 after brain injury is unclear. In the current study, we induced mild brain injury in C57BL/6 (wildtype, WT) mice and CCL5 knockout (CCL5-KO) mice using a weight-drop model. Cognitive and memory functions in mice were analyzed by Novel-object-recognition and Barnes Maze tests. The memory performance of both WT and KO mice were impaired after mild injury. Cognition and memory function in WT mice quickly recovered after 7 days but recovery took more than 14 days in CCL5-KO mice. FJC, NeuN and Hypoxyprobe staining revealed large numbers of neurons damaged by oxidative stress in CCL5-KO mice after mTBI. NADPH oxidase activity show increased ROS generation together with reduced glutathione peroxidase-1 (GPX1) and glutathione (GSH) activity in CCL5-KO mice; this was opposite to that seen in WT mice. CCL5 increased GPX1 expression and reduced intracellular ROS levels which subsequently increased cell survival both in primary neuron cultures and in an overexpression model using SHSY5Y cell. Memory impairment in CCL5-KO mice induced by TBI could be rescued by i.p. injection of the GSH precursor - N-acetylcysteine (NAC) or intranasal delivery of recombinant CCL5 into mice after injury. We conclude that CCL5 is an important molecule for GPX1 antioxidant activation during post-injury day 1-3, and protects hippocampal neurons from ROS as well as improves memory function after trauma.


Asunto(s)
Conmoción Encefálica , Animales , Quimiocina CCL5 , Glutatión Peroxidasa/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glutatión Peroxidasa GPX1
18.
J Neurosci ; 41(17): 3808-3821, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33727334

RESUMEN

To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.


Asunto(s)
Axones/fisiología , Paxillin/fisiología , Médula Espinal/crecimiento & desarrollo , Animales , Orientación del Axón/fisiología , Embrión de Pollo , Electroporación , Efrinas/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Genes src/genética , Humanos , Masculino , Ratones , MicroARNs/genética , Neuronas Motoras/fisiología , Mutación/genética , Neuritas/fisiología , Médula Espinal/citología
19.
Neuroscience ; 460: 88-106, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33631218

RESUMEN

Deep brain stimulation (DBS) in Parkinson's disease (PD) alters neuronal function and network communication to improve motor symptoms. The subthalamic nucleus (STN) is the most common DBS target for PD, but some patients experience adverse effects on memory and cognition. Previously, we reported that DBS of the ventral anterior (VA) and ventrolateral (VL) nuclei of the thalamus and at the interface between the two (VA|VL), collectively VA-VL, relieved forelimb akinesia in the hemiparkinsonian 6-hydroxydopamine (6-OHDA) rat model. To determine the mechanism(s) underlying VA-VL DBS efficacy, we examined how motor cortical neurons respond to VA-VL DBS using single-unit recording electrodes in anesthetized 6-OHDA lesioned rats. VA-VL DBS increased spike frequencies of primary (M1) and secondary (M2) motor cortical pyramidal cells and M2, but not M1, interneurons. To explore the translational merits of VA-VL DBS, we compared the therapeutic window, rate of stimulation-induced dyskinesia onset, and effects on memory between VA-VL and STN DBS. VA-VL and STN DBS had comparable therapeutic windows, induced dyskinesia at similar rates in hemiparkinsonian rats, and adversely affected performance in the novel object recognition (NOR) test in cognitively normal and mildly impaired sham animals. Interestingly, a subset of sham rats with VA-VL implants showed severe cognitive deficits with DBS off. VA-VL DBS improved NOR test performance in these animals. We conclude that VA-VL DBS may exert its therapeutic effects by increasing pyramidal cell activity in the motor cortex and interneuron activity in the M2, with plausible potential to improve memory in PD.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Animales , Humanos , Oxidopamina/toxicidad , Enfermedad de Parkinson/terapia , Ratas , Tálamo
20.
Medicine (Baltimore) ; 100(7): e24321, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33607766

RESUMEN

ABSTRACT: Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 induces severe infection, and it is responsible for a worldwide disease outbreak starting in late 2019. Currently, there are no effective medications against coronavirus. In the present study, we utilized a holistic bioinformatics approach to study gene signatures of SARS-CoV- and SARS-CoV-2-infected Calu-3 lung adenocarcinoma cells. Through the Gene Ontology platform, we determined that several cytokine genes were up-regulated after SARS-CoV-2 infection, including TNF, IL6, CSF2, IFNL1, IL-17C, CXCL10, and CXCL11. Differentially regulated pathways were detected by the Kyoto Encyclopedia of Genes and Genomes, gene ontology, and Hallmark platform, including chemokines, cytokines, cytokine receptors, cytokine metabolism, inflammation, immune responses, and cellular responses to the virus. A Venn diagram was utilized to illustrate common overlapping genes from SARS-CoV- and SARS-CoV-2-infected datasets. An Ingenuity pathway analysis discovered an enrichment of tumor necrosis factor- (TNF-) and interleukin (IL)-17-related signaling in a gene set enrichment analysis. Downstream networks were predicted by the Database for Annotation, Visualization, and Integrated Discovery platform also revealed that TNF and TNF receptor 2 signaling elicited leukocyte recruitment, activation, and survival of host cells after coronavirus infection. Our discovery provides essential evidence for transcript regulation and downstream signaling of SARS-CoV and SARS-CoV-2 infection.


Asunto(s)
COVID-19/genética , COVID-19/inmunología , Quimiocinas/biosíntesis , Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , Línea Celular Tumoral , Quimiocinas/genética , Citocinas/genética , Perfilación de la Expresión Génica , Ontología de Genes , Interacciones Huésped-Patógeno , Humanos , Interleucina-17/biosíntesis , Receptores Tipo II del Factor de Necrosis Tumoral/biosíntesis , SARS-CoV-2 , Factor de Necrosis Tumoral alfa/biosíntesis , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA