Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Am J Sports Med ; 48(6): 1389-1397, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32255657

RESUMEN

BACKGROUND: Anterior cruciate ligament (ACL) injury is a military occupational hazard that may be attributed to an individual's knee biomechanics and joint anatomy. This study sought to determine if greater flexion when landing with load resulted in knee biomechanics thought to decrease ACL injury risk and whether knee biomechanics during landing relate to knee anatomic metrics. HYPOTHESIS: Anatomic metrics regarding the slope and concavity of the tibial plateau will exhibit a significant relation to the increased anterior shear force on the knee and decreased knee flexion posture during landing with body-borne load. STUDY DESIGN: Descriptive laboratory study. METHODS: Twenty male military personnel completed a drop landing task with 3 load conditions: light (~6 kg), medium (15% body weight), and heavy (30% body weight). Participants were divided into groups based on knee flexion exhibited when landing with the heavy load (high- and low-Δflexion). Tibial slopes and depth were measured on weightbearing volumetric images of the knee obtained with a prototype cone beam computed tomography system. Knee biomechanics were submitted to a linear mixed model to evaluate the effect of landing group and load, with the anatomic metrics considered covariates. RESULTS: Load increased peak proximal anterior tibial shear force (P = .034), knee flexion angle (P = .024), and moment (P = .001) during landing. Only the high flexion group increased knee flexion (P < .001) during weighted landings with medium and heavy loads. The low flexion group used greater knee abduction angle (P = .030) and peak proximal anterior tibial shear force (P = .034) when landing with load. Anatomic metrics did not differ between groups, but ratio of medial-to-lateral tibial slope and medial tibial depth predicted peak proximal anterior tibial shear force (P = .009) and knee flexion (P = .034) during landing, respectively. CONCLUSION: Increasing knee flexion is an attainable strategy to mitigate risk of ACL injury, but certain individuals may be predisposed to knee forces and biomechanics that load the ACL during weighted landings. CLINICAL RELEVANCE: The ability to screen individuals for anatomic metrics that predict knee flexion may identify soldiers and athletes who require additional training to mitigate the risk of lower extremity injury.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Personal Militar , Ligamento Cruzado Anterior , Lesiones del Ligamento Cruzado Anterior/etiología , Lesiones del Ligamento Cruzado Anterior/prevención & control , Benchmarking , Fenómenos Biomecánicos , Peso Corporal , Humanos , Articulación de la Rodilla , Extremidad Inferior , Masculino
2.
J Biomech ; 69: 97-102, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29361275

RESUMEN

Osteoarthritis (OA) is a common occupational hazard for service members. This study quantified how body borne load impacts knee biomechanics for participants who do and do not present varus thrust (range of knee adduction motion exhibited from heel strike to mid-stance (0-51%)) during over-ground running. Eighteen (9 varus thrust and 9 control) military personnel had knee biomechanics recorded when running with three load conditions (light, ∼6 kg, medium, 15% BW, and heavy, 30% BW). Subject-based means for knee biomechanics were calculated and submitted to a RM ANOVA to test the main effects and possible interactions between load and varus thrust group. The varus thrust group exhibited greater varus thrust (p = .001) and peak stance (PS, 0-100%) knee adduction (p = .009) posture compared to the control group with the light load, but not for the medium (p = .741 and p = .825) or heavy loads (p = .142 and p = .429). With the heavy load, varus thrust group reduced varus thrust (p = .023), whereas, the control group increased varus thrust (p = .037) compared to the light load, and increased PS knee adduction moment compared to light (p = .006) and medium loads (p = .031). The varus thrust group, however, exhibited no significant difference in knee adduction moment between any load (p = .174). With the addition of body borne load, varus thrust participants exhibited a significant reduction in knee biomechanics related to OA; whereas, control participants adopted knee biomechanics, including greater varus thrust and knee adduction moment, related to the development of OA.


Asunto(s)
Rodilla/fisiología , Carrera/fisiología , Fenómenos Biomecánicos , Marcha , Humanos , Rodilla/fisiopatología , Masculino , Personal Militar , Osteoartritis de la Rodilla/fisiopatología , Postura , Soporte de Peso , Adulto Joven
3.
J Biomech ; 65: 131-137, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29096985

RESUMEN

This study quantified how a dual cognitive task impacts lower limb biomechanics during anticipated and unanticipated single-leg cuts with body borne load. Twenty-four males performed anticipated and unanticipated cuts with and without a dual cognitive task with three load conditions: no load (∼6 kg), medium load (15% of BW), and heavy load (30% of BW). Lower limb biomechanics were submitted to a repeated measures linear mixed model to test the main and interaction effects of load, anticipation, and dual task. With body borne load, participants increased peak stance (PS) hip flexion (p = .004) and hip internal rotation (p = .001) angle, and PS hip flexion (p = .001) and internal rotation (p = .018), and knee flexion (p = .016) and abduction (p = .001) moments. With the dual task, participants decreased PS knee flexion angle (p < .001) and hip flexion moment (p = .027), and increased PS knee external rotation angle (p = .034). During the unanticipated cut, participants increased PS hip (p = .040) and knee flexion angle (p < .001), and decreased PS hip adduction (p = .001), and knee abduction (p = .005) and external rotation (p = .026) moments. Adding body borne load produces lower limb biomechanical adaptations thought to increase risk of musculoskeletal injury, but neither anticipation nor dual task exaggerated those biomechanical adaptations. With a dual task, participants adopted biomechanics known to increase injury risk; whereas, participants used lower limb biomechanics thought to decrease injury risk during unanticipated cuts.


Asunto(s)
Articulación de la Cadera/fisiología , Articulación de la Rodilla/fisiología , Adulto , Anticipación Psicológica , Fenómenos Biomecánicos , Cognición , Humanos , Pierna/fisiología , Masculino , Movimiento , Fuerza Muscular , Rango del Movimiento Articular , Soporte de Peso , Adulto Joven
4.
J Mech Behav Biomed Mater ; 65: 734-742, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27756049

RESUMEN

Osteoarthritis and articular cartilage injuries are common conditions in human joints and a frequent cause of pain and disability. Unfortunately, cartilage is avascular and has limited capabilities for self-repair. Despite the societal impact, there is little information on the dynamic process of cartilage degeneration. We performed a series of cyclic unconfined compression tests motivated by in vivo loading conditions and designed to generate mechanical fatigue. We examined the functional (both stress-stretch and creep) responses of the tissue after recovery from a specified number of loading cycles, as well as histology and second harmonic generation microscopy images. The effect of compaction was complimented by the effect of fatigue in our unconfined compression tests. A three-way, repeated-measures mixed model ANOVA showed significant differences between loading with a physiologically relevant low magnitude, and two more severe loading magnitudes, in terms of the resulting specimen stiffness, time to equilibrium and thickness. There was a statistically significant effect of loading frequency on a specimen's time to equilibrium and significant interaction of force and frequency on specimen thickness and time to equilibrium. Increasing the number of loading cycles significantly impacted a specimen's effective stiffness and resulting thickness. We attribute permanent loss of mechanical function under cyclic loading to rearrangement and disruption of the collagen network and resulting proteoglycan (PG) aggregation, as seen in histological and second harmonic generation images, as a result of induced mechanical fatigue.


Asunto(s)
Cartílago Articular/fisiología , Estrés Mecánico , Soporte de Peso , Fenómenos Biomecánicos , Colágeno/ultraestructura , Humanos , Proteoglicanos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA