RESUMEN
Recently, the alcohol hangover has been accepted by the International Classification of Diseases - 11th revision as a separate 'child entity' to alcohol intoxication, a disease. Currently there are no marketed hangover treatments with support for clinical efficacy. Furthermore, diverse perspectives exist among healthcare professionals, policymakers, and alcohol consumers regarding the necessity and desirability of developing such treatments.
Asunto(s)
Intoxicación Alcohólica , Clasificación Internacional de Enfermedades , Humanos , Intoxicación Alcohólica/terapiaRESUMEN
Alcohol hangover is the combination of negative mental and physical symptoms which can be experienced after a single episode of alcohol consumption, starting when blood alcohol concentration approaches zero. We previously demonstrated that hangover provokes mitochondrial dysfunction, oxidative stress, imbalance in antioxidant defenses, and impairment in cellular bioenergetics. Chronic and acute ethanol intake induces neuroapoptosis but there are no studies which evaluated apoptosis at alcohol hangover. The aim of the present work was to study alcohol residual effects on intrinsic and extrinsic apoptotic signaling pathways in mice brain cortex. Male Swiss mice received i.p. injection of ethanol (3.8 g/kg) or saline. Six hours after injection, at alcohol hangover onset, mitochondria and tissue lysates were obtained from brain cortex. Results indicated that during alcohol hangover a loss of granularity of mitochondria and a strong increment in mitochondrial permeability were observed, indicating the occurrence of swelling. Alcohol-treated mice showed a significant 35% increase in Bax/Bcl-2 ratio and a 5-fold increase in the ratio level of cytochrome c between mitochondria and cytosol. Caspase 3, 8 and 9 protein expressions were 32%, 33% and 20% respectively enhanced and the activity of caspase 3 and 6 was 30% and 20% increased also due to the hangover condition. Moreover, 38% and 32% increments were found in PARP1 and p53 protein expression respectively and on the contrary, SIRT-1 was almost 50% lower than controls due to the hangover condition. The present work demonstrates that alcohol after-effects could result in the activation of mitochondrial and non-mitochondrial apoptosis pathways.
Asunto(s)
Intoxicación Alcohólica , Etanol , Masculino , Animales , Ratones , Etanol/toxicidad , Caspasa 3/metabolismo , Nivel de Alcohol en Sangre , Intoxicación Alcohólica/metabolismo , Encéfalo/metabolismo , Apoptosis , Transducción de SeñalRESUMEN
Mitochondrial function at synapses can be assessed in isolated nerve terminals. Synaptosomes are structures obtained in vitro by detaching the nerve endings from neuronal bodies under controlled homogenization conditions. Several protocols have been described for the preparation of intact synaptosomal fractions. Herein a fast and economical method to obtain synaptosomes with optimal intrasynaptic mitochondria functionality was described. Synaptosomal fractions were obtained from mouse brain cortex by differential centrifugation followed by centrifugation in a Ficoll gradient. The characteristics of the subcellular particles obtained were analyzed by flow cytometry employing specific tools. Integrity and specificity of the obtained organelles were evaluated by calcein and SNAP-25 probes. The proportion of positive events of the synaptosomal preparation was 75 ± 2 % and 48 ± 7% for calcein and Synaptosomal-Associated Protein of 25 kDa (SNAP-25), respectively. Mitochondrial integrity was evaluated by flow cytometric analysis of cardiolipin content, which indicated that 73 ± 1% of the total events were 10 N-nonylacridine orange (NAO)-positive. Oxygen consumption, ATP production and mitochondrial membrane potential determinations showed that mitochondria inside synaptosomes remained functional after the isolation procedure. Mitochondrial and synaptosomal enrichment were determined by measuring synaptosomes/ homogenate ratio of specific markers. Functionality of synaptosomes was verified by nitric oxide detection after glutamate addition. As compared with other methods, the present protocol can be performed briefly, does not imply high economic costs, and provides an useful tool for the isolation of a synaptosomal preparation with high mitochondrial respiratory capacity and an adequate integrity and function of intraterminal mitochondria.
Asunto(s)
Mitocondrias , Sinaptosomas , Ratones , Animales , Sinaptosomas/química , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura , Mitocondrias/metabolismo , Metabolismo Energético , Encéfalo/metabolismo , Corteza CerebralRESUMEN
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) has been described as a potential toxic for dopaminergic metabolism both in vivo and in vitro. Its main metabolite diamino-chloro triazine (DACT) has been shown to achieve higher levels in brain tissue than atrazine. The aim of this study was to evaluate the in vitro effects of atrazine and DACT on striatal mitochondrial function, active oxygen species generation, and nitric oxide (NO) content. Incubation of mitochondria with atrazine (10 µM) was not able to modify oxygen consumption. However, a 50% increase in malate-glutamate state 4 respiratory rates was observed after DACT treatment (100 µM) without changes in respiratory state 3. Atrazine was able to inhibit complex I-III activity by 30% and DACT induced a tendency to decrease by 17% in the striatum. Regarding reactive oxygen species (ROS), DACT increased H2 O2 production by 43%. Also, superoxide anion levels were higher (14%) after atrazine exposure than in control mitochondria. Incubation of striatal mitochondria with atrazine and DACT induced membrane depolarization by 15% and 19%, respectively. Also, atrazine increased NO content by 10% but no significant changes were observed after exposure of mitochondria to DACT. Glutathione peroxidase activity was inhibited (56%) by DACT and atrazine inhibited superoxide dismutase activity by 60%. Also, cardiolipin oxidation (15%) was observed after atrazine treatment. Summing up, the obtained results suggest that in vitro atrazine and DACT induce ROS production affecting striatal mitochondrial function. The atrazine effects would be attributed to a direct effect on the mitochondrial respiratory chain and superoxide dismutase activity while DACT appears to disturb glutathione-related enzyme system.
Asunto(s)
Atrazina , Herbicidas , Atrazina/toxicidad , Atrazina/metabolismo , Herbicidas/toxicidad , Especies Reactivas de Oxígeno , Triazinas/farmacología , Superóxido Dismutasa , Mitocondrias/metabolismoRESUMEN
Nitric oxide generation is related to the activity of certain proteins located at synaptic sites. Previous findings show that NOS activity, nNOS protein expression, respiratory parameters and mitochondrial complex activities are altered in rat cerebral cortex by administration of levocabastine, an antagonist of histamine H1 and neurotensin NTS2 receptors. ATP provision by mitochondria may play an important role in the functional interaction between synaptic proteins NMDA receptor and PSD-95 with NO synthesis. In this context, our purpose was to evaluate the effect of levocabastine administration on protein expression of PSD-95, GluN2B and iNOS, as well as on mitochondrial ATP production. Male Wistar rats received a single (i.p.) dose of levocabastine (50 µg/kg) or saline solution (controls) and were decapitated 18 h later. Mitochondrial and synaptosomal membrane fractions were isolated from cerebral cortex by differential and sucrose gradient centrifugation. Expression of synaptic proteins was evaluated by Western blot assays in synaptosomal membrane fractions. Oxygen consumption, mitochondrial membrane potential and ATP production rate were determined in fresh crude mitochondrial fractions. After levocabastine treatment, protein expression of PSD-95, GluN2B and ß-actin decreased 97, 45 and 55%, respectively, whereas that of iNOS enhanced 3.5-fold versus controls. In crude mitochondrial fractions levocabastine administration reduced roughly 15% respiratory control rate as assayed with malate-glutamate or succinate as substrates, decreased mitochondrial membrane potential (21%), and ATP production rates (57%). Results suggested that levocabastine administration induces alterations in synaptic proteins of the protein complex PSD-95/NMDA receptor/nNOS and in neuron cytoskeleton. Mitochondrial bioenergetics impairment may play a role in the functional link between synaptic proteins and NO synthesis.
Asunto(s)
Homólogo 4 de la Proteína Discs Large/metabolismo , Antagonistas de los Receptores Histamínicos H1/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Piperidinas/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinaptosomas/efectos de los fármacosRESUMEN
Alcohol hangover is defined as the combination of mental and physical symptoms experienced the day after a single episode of heavy drinking, starting when blood alcohol concentration approaches zero. We previously evidenced increments in free radical generation and an imbalance in antioxidant defences in non-synaptic mitochondria and synaptosomes during hangover. It is widely known that acute alcohol exposure induces changes in nitric oxide (NO) production and blocks the binding of glutamate to NMDAR in central nervous system. Our aim was to evaluate the residual effect of acute ethanol exposure (hangover) on NO metabolism and the role of NMDA receptor-PSD95-nNOS pathway in non-synaptic mitochondria and synaptosomes from mouse brain cortex. Results obtained for the synaptosomes fraction showed a 37% decrease in NO total content, a 36% decrease in NOS activity and a 19% decrease in nNOS protein expression. The in vitro addition of glutamate to synaptosomes produced a concentration-dependent enhancement of NO production which was significantly lower in samples from hangover mice than in controls for all the glutamate concentrations tested. A similar patter of response was observed for nNOS activity being decreased both in basal conditions and after glutamate addition. In addition, synaptosomes exhibited a 64% and 15% reduction in NMDA receptor subunit GluN2B and PSD-95 protein expression, respectively. Together with this, glutamate-induced calcium entry was significant decreased in synaptosomes from alcohol-treated mice. On the other hand, in non-synaptic mitochondria, no significant differences were observed in NO content, NOS activity or nNOS protein expression. The expression of iNOS remained unaltered in synaptosomes and non-synaptic mitochondria. Here we demonstrated that hangover effects on NO metabolism are strongly evidenced in synaptosomes probably due to a disruption in NMDAR/PSD-95/nNOS pathway.
Asunto(s)
Intoxicación Alcohólica/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Homólogo 4 de la Proteína Discs Large/genética , Masculino , Ratones , Óxido Nítrico/análisis , Óxido Nítrico Sintasa de Tipo I/genéticaRESUMEN
Previous reports have shown that ketamine triggered apoptosis in immature developing brain involving mitochondrial-mediated pathways. However, no data for ketamine effects on hippocampal and cortical mitochondrial function are available in prepubertal rats. Twenty-one-day-old Sprague-Dawley rats received ketamine (40 mg/kg i.p.) for 3 days and were killed 24 hr after the last injection. Hippocampal mitochondria from ketamine-treated rats showed decreased malate-glutamate state 4 and 3 respiratory rates and an inhibition in complex I and IV activities. Hippocampal mitochondrial membrane depolarization and mitochondrial permeability transition induction were observed. This was not reflected in an increment of H2 O2 production probably due to increased Mn-SOD and catalase activities, 24 hr after treatment. Interestingly, increased H2 O2 production rates and cardiolipin oxidation were found in hippocampal mitochondria shortly after ketamine treatment (45 min). Unlike the hippocampus, ketamine did not affect mitochondrial parameters in the brain cortex, being the area less vulnerable to suffer ketamine-induced oxidative damage. Results provide evidences that exposure of prepubertal rats to ketamine leads to an induction of mitochondrial ROS generation at early stages of treatment that was normalized by the triggering of antioxidant systems. Although hippocampal mitochondria from prepubertal rats were capable of responding to the oxidative stress, they remain partially dysfunctional.
Asunto(s)
Corteza Cerebral/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Ketamina/farmacología , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Catalasa/metabolismo , Corteza Cerebral/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Malatos/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismoRESUMEN
Ketamine is widely used both as anesthetic and abuse drug. In this study, we investigated the effects of a wide range of ketamine concentrations (100-500-1000⯵M) on calcium mobilization and the induction of cell death in undifferentiated PC12 cells, 24â¯h after treatment. Calcium mobilization was measured as the percentage of fluorescence one minute after depolarization by flow cytometry. For the kinetic changes in [Ca2+]c, fluorescence microscopy with Live Imaging was used with a resolution time of 0.87â¯s (exposure time: 20â¯ms). Fluo-4â¯AM was used for both methods. Flow cytometry using TMRE, NAO, and Annexin V-FITC/PI probes were employed for the evaluation of mitochondrial membrane potential (ΔΨm), cardiolipin content and type of cell death respectively. Fluorescence microscopy was used for the evaluation of DNA fragmentation by TUNEL assay with dUTP-conjugated FITC. Results obtained by flow cytometry showed a clear increment in cell response to depolarization after addition of 50â¯mM and 70â¯mM KCl in PC12 cells. Simultaneously, cells treated with 100⯵M and 500⯵M ketamine during 24â¯h, induced a decreased response to depolarization as compared with control cells. In addition, 1000⯵M ketamine induced a similar increase in Fluo4AM fluorescence either after addition of 50 or 70â¯mM KCl. The kinetic assays showed that after 100â¯mM KCl, cells pre-treated with ketamine showed a marked decrease in [Ca2+]c as compared with control cells. In the case of 1000⯵M ketamine treatment, an increased and sustained [Ca2+]c was observed along the whole assay, indicating a cell disability to maintain calcium homeostasis. Associated with these cytosolic calcium alterations, mitochondrial depolarization, cardiolipin depletion and alteration in Bax protein expression were observed after ketamine treatment. Our data demonstrate that ketamine action in these cells seems to be independent from NMDAR, as observed by the absence of glutamatecalcium response. Acute disturbance in [Ca2+]c could be mediated by the inhibition of VDCCs as part of the molecular mechanism of ketamine cytotoxicity leading to mitochondrial dysfunction and cell death by apoptosis and necrosis.
Asunto(s)
Canales de Calcio/metabolismo , Ketamina/farmacología , Analgésicos/administración & dosificación , Analgésicos/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Cardiolipinas/metabolismo , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ketamina/administración & dosificación , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células PC12 , Cloruro de Potasio/farmacología , Ratas , Proteína X Asociada a bcl-2/metabolismoRESUMEN
Alcohol hangover (AH) has been associated with oxidative stress and mitochondrial dysfunction. We herein postulate that AH-induced mitochondrial alterations can be due to a different pattern of response in synaptosomes and non-synaptic (NS) mitochondria. Mice received intraperitoneal (i.p.) injections of ethanol (3.8 g/kg) or saline and were sacrificed 6 h afterward. Brain cortex NS mitochondria and synaptosomes were isolated by Ficoll gradient. Oxygen consumption rates were measured in NS mitochondria and synaptosomes by high-resolution respirometry. Results showed that NS-synaptic mitochondria from AH animals presented a 26% decrease in malate-glutamate state 3 respiration, a 64% reduction in ATP content, 28-37% decrements in ATP production rates (malate-glutamate or succinate-dependent, respectively), and 44% inhibition in complex IV activity. No changes were observed in mitochondrial transmembrane potential (ΔΨ) or in UCP-2 expression in NS-mitochondria. Synaptosome respiration driving proton leak (in the presence of oligomycin), and spare respiratory capacity (percentage ratio between maximum and basal respiration) were 30% and 15% increased in hangover condition, respectively. Synaptosomal ATP content was 26% decreased, and ATP production rates were 40-55% decreased (malate-glutamate or succinate-dependent, respectively) in AH mice. In addition, a 24% decrease in ΔΨ and a 21% increase in UCP-2 protein expression were observed in synaptosomes from AH mice. Moreover, mitochondrial respiratory complexes I-III, II-III, and IV activities measured in synaptosomes from AH mice were decreased by 18%, 34%, and 50%, respectively. Results of this study reveal that alterations in bioenergetics status during AH could be mainly due to changes in mitochondrial function at the level of synapses.
Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Corteza Cerebral/metabolismo , Metabolismo Energético/fisiología , Etanol/toxicidad , Mitocondrias/metabolismo , Sinaptosomas/metabolismo , Intoxicación Alcohólica/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Sinaptosomas/efectos de los fármacosRESUMEN
Neurotensin is known to inhibit neuronal Na+ , K+ -ATPase, an effect that is rescued by nitric oxide (NO) synthase inhibition. However, whether the neurotensinergic and the nitrergic systems are independent pathways, or are mechanistically linked, remains unknown. Here, we addressed this issue and found that the administration of low affinity neurotensin receptor (NTS2) antagonist, levocabastine (50 µg/kg, i.p.) inhibited NO synthase (NOS) activity by 74 and 42% after 18 h in synaptosomal and mitochondrial fractions isolated from the Wistar rat cerebral cortex, respectively; these effects disappeared 36 h after levocabastine treatment. Intriguingly, whereas neuronal NOS protein abundance decreased (by 56%) in synaptosomes membranes, it was enhanced (by 86%) in mitochondria 18 h after levocabastine administration. Levocabastine enhanced the respiratory rate of synaptosomes in the presence of oligomycin, but it failed to alter the spare respiratory capacity; furthermore, the mitochondrial respiratory chain (MRC) complexes I-IV activities were severely diminished by levocabastine administration. The inhibition of NOS and MRC complexes activities were also observed after incubation of synaptosomes and mitochondria with levocabastine (1 µM) in vitro. These data indicate that the NTS2 antagonist levocabastine regulates NOS expression and activity at the synapse, suggesting an interrelationship between the neurotensinergic and the nitrergic systems. However, the bioenergetics effects of NTS2 activity inhibition are likely to be independent from the regulation of NO synthesis.
Asunto(s)
Encéfalo/efectos de los fármacos , Antagonistas de los Receptores Histamínicos H1 no Sedantes/farmacología , Mitocondrias/efectos de los fármacos , Óxido Nítrico/biosíntesis , Piperidinas/farmacología , Animales , Encéfalo/metabolismo , Masculino , Óxido Nítrico Sintasa/metabolismo , Ratas , Ratas Wistar , Receptores de Neurotensina/antagonistas & inhibidoresRESUMEN
Alcohol hangover (AH) is the pathophysiological state after a binge-like drinking. We have previously demonstrated that AH induced bioenergetics impairments in a total fresh mitochondrial fraction in brain cortex and cerebellum. The aim of this work was to determine free radical production and antioxidant systems in non-synaptic mitochondria and synaptosomes in control and hangover animals. Superoxide production was not modified in non-synaptic mitochondria while a 17.5% increase was observed in synaptosomes. A similar response was observed for cardiolipin content as no changes were evidenced in non-synaptic mitochondria while a 55% decrease in cardiolipin content was found in synaptosomes. Hydrogen peroxide production was 3-fold increased in non-synaptic mitochondria and 4-fold increased in synaptosomes. In the presence of deprenyl, synaptosomal H2O2 production was 67% decreased in the AH condition. Hydrogen peroxide generation was not affected by deprenyl addition in non-synaptic mitochondria from AH mice. MAO activity was 57% increased in non-synaptic mitochondria and 3-fold increased in synaptosomes. Catalase activity was 40% and 50% decreased in non-synaptic mitochondria and synaptosomes, respectively. Superoxide dismutase was 60% decreased in non-synaptic mitochondria and 80% increased in synaptosomal fractions. On the other hand, GSH (glutathione) content was 43% and 17% decreased in synaptosomes and cytosol. GSH-related enzymes were mostly affected in synaptosomes fractions by AH condition. Acetylcholinesterase activity in synaptosomes was 11% increased due to AH. The present work reveals that AH provokes an imbalance in the cellular redox homeostasis mainly affecting mitochondria present in synaptic terminals.
Asunto(s)
Trastornos del Sistema Nervioso Inducidos por Alcohol/metabolismo , Corteza Cerebral/patología , Radicales Libres/metabolismo , Mitocondrias/metabolismo , Terminales Presinápticos/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Cardiolipinas/metabolismo , Metabolismo Energético , Etanol/toxicidad , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Oxidación-Reducción , Terminales Presinápticos/patología , Superóxidos/metabolismo , Sinaptosomas/metabolismoRESUMEN
Alterations in mitochondrial bioenergetics have been associated with brain aging. In order to evaluate the susceptibility of brain cortex synaptosomes and non-synaptic mitochondria to aging-dependent dysfunction, male Swiss mice of 3 or 17 months old were used. Mitochondrial function was evaluated by oxygen consumption, mitochondrial membrane potential and respiratory complexes activity, together with UCP-2 protein expression. Basal respiration and respiration driving proton leak were decreased by 26 and 33 % in synaptosomes from 17-months old mice, but spare respiratory capacity was not modified by aging. Succinate supported state 3 respiratory rate was decreased by 45 % in brain cortex non-synaptic mitochondria from 17-month-old mice, as compared with young animals, but respiratory control was not affected. Synaptosomal mitochondria would be susceptible to undergo calcium-induced depolarization in 17 months-old mice, while non-synaptic mitochondria would not be affected by calcium overload. UCP-2 was significantly up-regulated in both synaptosomal and submitochondrial membranes from 17-months old mice, compared to young animals. UCP-2 upregulation seems to be a possible mechanism by which mitochondria would be resistant to suffer oxidative damage during aging.
Asunto(s)
Envejecimiento/metabolismo , Corteza Cerebral/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Sinaptosomas/metabolismo , Animales , Calcio/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , RatonesRESUMEN
Alcohol hangover (AH) is a particular state after binge-like drinking. AH begins when ethanol is absent in plasma and is characterized by a cluster of physical and psychological symptoms. Alcohol disrupts circadian patterns of behavioral and physiological parameters; however, the involvement of circadian clock on the recovery of AH was not explored. Our aim was to study the effect of continuous darkness and the possible involvement of the circadian clock in the recovery time of neuromuscular impairment and anxiety related-behavior due to AH. Male Swiss mice were habituated to 12:12 L:D or continuous darkness. Each group was injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Motor performance and anxiety phenotype were evaluated at a basal point (ZT0) and every 2 h up to 20 h after blood alcohol levels were close to zero (hangover onset). A third group was subjected to a phase advance during which a hangover episode was induced and behavioral tests were carried out for each group of treatment and resynchronization day. Constant darkness resulted to be in a faster recovery of both motor and anxiety impairments in AH compared with the recovery pattern observed under normal light-dark conditions. Mice suffering from a phase shift exhibited behavioral disruptions due to both AH and phase advance. Results indicated that a synchronized circadian clock is necessary for an adequate recovery of alcohol hangover symptoms.
Asunto(s)
Trastornos Relacionados con Alcohol/fisiopatología , Ritmo Circadiano/fisiología , Oscuridad , Trastornos Relacionados con Alcohol/psicología , Animales , Ansiedad , Masculino , Ratones , Actividad Motora , Fotoperiodo , Factores de TiempoRESUMEN
Alcohol hangover is a temporary state described as the unpleasant next-day effects after binge-like drinking. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. Affective behavior is impaired during the acute phase of alcohol intoxication; however, no reports indicate if similar effects are observed during withdrawal. The aim of this work was to study the time-extension and possible fluctuations in affective behavior during a hangover episode. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8g/kg BW) (hangover group). Anxiety, fear-related behavior and despair phenotype were evaluated at a basal point (ZT0) and every 2h up to 20h after blood alcohol levels were close to zero (hangover onset). Also, anhedonia signs and pain perception disabilities were studied. Mice exhibited an increase in anxiety-like behavior during 4h and 14h after hangover onset when evaluated by the elevated-plus maze and open field test respectively (p<0.05). Fear-related behavior was detected in hangover animals by the increase of freezing and decrease of line crossings and rearing frequency during 16h after hangover onset (p<0.001). Depression signs were found in hangover mice during 14h (p<0.05). Hangover mice showed a significant decrease in pain perception when tested by tail immersion test at the beginning of hangover (p<0.05). Our findings demonstrate a time-extension between 14 and 16h for hangover affective impairments. This study shows the long lasting effects of hangover over the phase of ethanol intoxication.
Asunto(s)
Afecto/efectos de los fármacos , Intoxicación Alcohólica/psicología , Depresores del Sistema Nervioso Central/efectos adversos , Etanol/efectos adversos , Anhedonia , Animales , Ansiedad/psicología , Defecación/fisiología , Miedo/psicología , Preferencias Alimentarias , Suspensión Trasera/psicología , Calor , Inmersión/fisiopatología , Masculino , Ratones , Actividad Motora/fisiología , Dimensión del Dolor , Percepción del Dolor/efectos de los fármacos , Estimulación Luminosa , Sacarosa , Natación/psicologíaRESUMEN
Alcohol hangover is defined as the unpleasant next-day state following an evening of excessive alcohol consumption. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. During hangover cognitive functions and subjective capacities are affected along with inefficiency, reduced productivity, absenteeism, driving impairments, poor academic achievement and reductions in motor coordination. The aim of this work was to study the type and length of motor and exploratory functions from the beginning to the end of the alcohol hangover. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Motor performance, walking deficiency, motor strength, locomotion and exploratory activity were evaluated at a basal point (ZT0) and every 2 h up to 20 h after blood alcohol levels were close to zero (hangover onset). Motor performance was 80% decreased at the onset of hangover (p<0.001). Hangover mice exhibited a reduced motor performance during the next 16 h (p<0.01). Motor function was recovered 20 h after hangover onset. Hangover mice displayed walking deficiencies from the beginning to 16 h after hangover onset (p<0.05). Moreover, mice suffering from a hangover, exhibited a significant decrease in neuromuscular strength during 16 h (p<0.001). Averaged speed and total distance traveled in the open field test and the exploratory activity on T-maze and hole board tests were reduced during 16 h after hangover onset (p<0.05). Our findings demonstrate a time-extension between 16 to 20 h for hangover motor and exploratory impairments. As a whole, this study shows the long lasting effects of alcohol hangover.
Asunto(s)
Intoxicación Alcohólica/fisiopatología , Cognición/efectos de los fármacos , Etanol/farmacología , Conducta Exploratoria/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Etanol/sangre , Masculino , Ratones , Factores de TiempoRESUMEN
Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism.