Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Expert Opin Ther Targets ; 28(5): 437-459, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38828744

RESUMEN

BACKGROUND: Hypertension worsens outcomes in SARS-CoV-2 patients. Sartans, a type of antihypertensive angiotensin receptor blocker-(ARB), reduce COVID-19 morbidity and mortality by targeting angiotensin-converting enzyme-2 (ACE2). This study aimed to evaluate the antiviral and antihypertensive effects of nirmatrelvir, commercial sartans (candesartan, losartan, and losartan carboxylic (Exp3174)), and newly synthesized sartans (benzimidazole-N-biphenyl carboxyl (ACC519C) and benzimidazole-N-biphenyl tetrazole (ACC519T)), compared to nirmatrelvir, the antiviral component of Paxlovid. RESEARCH DESIGN AND METHODS: Surface plasmon resonance (SPR) and enzymatic studies assessed drug effects on ACE2. Antiviral abilities were tested with SARS-CoV-2-infected Vero E6 cells, and antihypertensive effects were evaluated using angiotensin II-contracted rabbit iliac arteries. RESULTS: Benzimidazole-based candesartan and ACC519C showed antiviral activity comparable to nirmatrelvir (95% inhibition). Imidazole-based losartan, Exp3174, and ACC519T were less potent (75%-80% and 50%, respectively), with Exp3174 being the least effective. SPR analysis indicated high sartans-ACE2 binding affinity. Candesartan and nirmatrelvir combined had greater inhibitory and cytopathic effects (3.96%) than individually (6.10% and 5.08%). ACE2 enzymatic assays showed varying effects of novel sartans on ACE2. ACC519T significantly reduced angiotensin II-mediated contraction, unlike nirmatrelvir and ACC519T(2). CONCLUSION: This study reports the discovery of a new class of benzimidazole-based sartans that significantly inhibit SARS-CoV-2, likely due to their interaction with ACE2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Antivirales , Bencimidazoles , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Bencimidazoles/farmacología , Animales , Antivirales/farmacología , Humanos , Chlorocebus aethiops , Enzima Convertidora de Angiotensina 2/metabolismo , SARS-CoV-2/efectos de los fármacos , Células Vero , Conejos , Antagonistas de Receptores de Angiotensina/farmacología , Compuestos de Bifenilo/farmacología , Antihipertensivos/farmacología , Tetrazoles/farmacología , Masculino , Hipertensión/tratamiento farmacológico , COVID-19 , Losartán/farmacología , Resonancia por Plasmón de Superficie
2.
Viruses ; 16(5)2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793693

RESUMEN

Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.


Asunto(s)
Neuronas , ARN Viral , Replicación Viral , Virus del Nilo Occidental , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/fisiología , ARN Viral/genética , ARN Viral/metabolismo , Neuronas/virología , Neuronas/metabolismo , Animales , Línea Celular , Genoma Viral , Fiebre del Nilo Occidental/virología , Humanos , Ratones , Regulación Viral de la Expresión Génica
3.
Chempluschem ; : e202400194, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38646973

RESUMEN

Nanoparticle formation by Spark Discharge Aerosol Generation offers low-cost fabrication of nanoparticles, without the use of chemicals or vacuum. It produces aerosol particles of a few nanometers in size with high purity. In this work, copper-based -CuO (tenorite) and Cu- nanoparticles are produced, characterized and used to modify face mask air filters, achieving the introduction of antibacterial and antiviral properties. A range of characterization techniques have been employed, down to the atomic level. The majority of the particles are CuO (of a few nanometers in size that agglomerate to form aggregates), the remainder being a small number of larger Cu particles. The particles were deposited on various substrates, mainly fiber filters in order to study them and use them as biocidal agents. On face masks, their antibacterial activity against Escherichia coli (E.coli) results in a 100 % decrease in bacteria cell viability. Their antiviral activity on face masks results in a 90 % reduction of the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) viability, 15 minutes post the application of the virus stock solution. This highlights the effectiveness of this approach, its simplicity, its low cost and its excellent environmental credentials.

4.
J Mycol Med ; 34(2): 101477, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574412

RESUMEN

BACKGROUND: Candida auris was sporadically detected in Greece until 2019. Thereupon, there has been an increase in isolations among inpatients of healthcare facilities. AIM: We aim to report active surveillance data on MALDI-TOF confirmed Candida auris cases and outbreaks, from November 2019 to September 2021. METHODS: A retrospective study on hospital-based Candida auris data, over a 23-month period was conducted, involving 11 hospitals within Attica region. Antifungal susceptibility testing and genotyping were conducted. Case mortality and fatality rates were calculated and p-values less than 0.05 were considered statistically significant. Infection control measures were enforced and enhanced. RESULTS: Twenty cases with invasive infection and 25 colonized were identified (median age: 72 years), all admitted to hospitals for reasons other than fungal infections. Median hospitalisation time until diagnosis was 26 days. Common risk factors among cases were the presence of indwelling devices (91.1 %), concurrent bacterial infections during hospitalisation (60.0 %), multiple antimicrobial drug treatment courses prior to hospitalisation (57.8 %), and admission in the ICU (44.4 %). Overall mortality rate was 53 %, after a median of 41.5 hospitalisation days. Resistance to fluconazole and amphotericin B was identified in 100 % and 3 % of tested clinical isolates, respectively. All isolates belonged to South Asian clade I. Outbreaks were identified in six hospitals, while remaining hospitals detected sporadic C. auris cases. CONCLUSION: Candida auris has proven its ability to rapidly spread and persist among inpatients and environment of healthcare facilities. Surveillance focused on the presence of risk factors and local epidemiology, and implementation of strict infection control measures remain the most useful interventions.


Asunto(s)
Antifúngicos , Candida auris , Candidiasis , Infección Hospitalaria , Brotes de Enfermedades , Pruebas de Sensibilidad Microbiana , Humanos , Grecia/epidemiología , Anciano , Brotes de Enfermedades/estadística & datos numéricos , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano de 80 o más Años , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Candidiasis/epidemiología , Candidiasis/microbiología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Candida auris/genética , Adulto , Hospitales/estadística & datos numéricos , Instituciones de Salud/estadística & datos numéricos , Control de Infecciones , Factores de Riesgo , Farmacorresistencia Fúngica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Candida/aislamiento & purificación , Candida/efectos de los fármacos , Candida/clasificación , Hospitalización/estadística & datos numéricos
5.
Ann Vasc Surg ; 99: 366-379, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37922957

RESUMEN

BACKGROUND: Small abdominal aortic aneurysms (AAAs) are asymptomatic but can potentially lead to rupture if left undetected. To date, there is a lack of simple nonradiologic routine tests available for diagnosing AAAs. MicroRNAs (miRNAs) have been proven to be good-quality biomarkers in several diseases, including AAA. METHODS: An attempt to identify a panel of circulating miRNAs with differential expression in AAAs via next-generation sequencing (NGS) was performed in serum samples: small AAAs (n = 3), large AAAs (n = 3), and controls (n = 3). For miR-24, validation with real-time polymerase chain reaction (PCR) was undertaken in a larger group (n = 80). RESULTS: In the NGS study, 23 miRNAs were identified as differentially expressed (with statistical significance) in small AAAs in comparison with controls. Among them, miR-24 showed the largest upregulation with 23-fold change (log2FC 4.5, P = 0.024). For large AAAs compared with controls, and small AAAs compared with large AAAs, a panel of 33 and 131 miRNAs showed statistically significant differential expression, respectively. Based on the results of the NGS stage, a literature search was performed, and information regarding AAA pathogenesis, coronary artery disease, and peripheral arterial disease was documented where applicable: miR-24, miR-103, miR-193a, miR-486, miR-582, and miR-3663. Of these 6 miRNAs, miR-24 was chosen for further validation with real-time PCR. Additionally, in the NGS study analysis, 17 miRNAs were common between the small-large AAAs, small AAAs-controls, and large AAAs-controls comparisons: miR-7846, miR-3195, miR-486-2, miR-3194, miR-5589, miR-1538, miR-3178, miR-4771-1, miR-5695, miR-6504, miR-1908, miR-6823, miR-3159, miR-23a, miR-7853, miR-496, and miR-193a. Interestingly, in the validation stage with real-time PCR, miR-24 was found downregulated in small and large AAAs compared with controls (fold-changes: 0.27, P = 0.015 and 0.15, P = 0.005, respectively). No correlation was found between average Ct values, aneurysm diameter, and patients' age. CONCLUSIONS: Our findings further highlight the importance of miR-24 as a potential biomarker as well as a therapeutic target for abdominal aneurysmal disease. Future research and validation of a panel of miRNAs for AAA would aid in diagnosis and discrimination between diseases with overlapping pathogeneses.


Asunto(s)
Aneurisma de la Aorta Abdominal , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Resultado del Tratamiento , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/genética , Biomarcadores , Secuenciación de Nucleótidos de Alto Rendimiento
6.
Curr Oncol ; 30(10): 8902-8915, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37887543

RESUMEN

Using next-generation sequencing (NGS), we investigated DNA mutations in the plasma tumor cell-free circulating DNA (ctDNA) of 38 patients with inoperable squamous cell head neck cancer (SCHNC) before and after the completion of chemoradiotherapy (CRT). Baseline mutations of the TP53 were recorded in 10/38 (26.3%) and persisted in 4/10 patients after CRT. ΤP53 mutations were further detected post CRT in 7/38 additional patients with undetectable mutations at baseline (overall rate 44.7%). Furthermore, 4/38 patients exhibited baseline mutations of the EGFR, AR, FGFR3, and FBXW3, and four new gene mutations were detected after CRT (MTOR, EGFR3, ALK, and SF3B1). Τ4 stage was related with a significantly higher rate of mutations (TP53 and overall). Mutations were observed in 8/30 (26.6%) responders (complete/partial response) vs. in 6/8 (75%) of the rest of the patients (p = 0.03). Significant poorer LRFS was noted for patients with mutations detected before and after CRT (p = 0.02). Patients who had detectable mutations either before or after CRT had significantly worse DMFS (p = 0.04 overall, and p = 0.02 for TP53 mutations). It was concluded that assessment of mutations before and after the end of CRT is essential to characterize patients with a high risk of locoregional recurrence or metastatic progression.


Asunto(s)
ADN Tumoral Circulante , Neoplasias de Cabeza y Cuello , Humanos , ADN Tumoral Circulante/genética , Recurrencia Local de Neoplasia/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento , Quimioradioterapia
7.
Cancer Diagn Progn ; 3(5): 551-557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671311

RESUMEN

Background/Aim: The plasma levels of cell-free DNA (cfDNA) in cancer patients increase due to rapid cancer cell proliferation and death. Therefore, cfDNA can be used to study specific tumor-DNA features. In addition, the non-specific cfDNA concentration may be an important biomarker of cancer prognosis. Patients and Methods: We prospectively examined the predictive role of cfDNA levels and the kinetics in the outcome of chemo-radiotherapy (CRT) in a cohort of 47 patients with locally advanced squamous cell head-neck cancer (SCHNC) treated with definitive chemo-radiotherapy. Results: Increased cfDNA levels after therapy completion (after/before treatment ratio; A/B-ratio >1) were found in 26/47 patients (55.3%). Locally advanced T4-stage was significantly associated with higher cfDNA levels after CRT (3.3 ng/µl in T4-stage vs. 1.3 ng/µl in T1-3 stages, p=0.007). Patients who responded to CRT (partial/complete response) had significantly lower cfDNA levels before therapy (mean values 1.2 ng/µl vs. 2.7 ng/µl, p=0.03). A significantly worse locoregional progression-free survival in patients with an A/B-ratio >1 was documented (p=0.01; hazard ratio 3.5, 95%CI=1.2-9.7). This was also confirmed in multivariate analysis, where the A/B-ratio was an independent predictive variable of locoregional relapse (p=0.03, hazard ratio 3.9, 95%CI=1.2-13). Conclusion: High post-CRT cfDNA levels could be an early biomarker for the immediate recruitment of patients with SCHNC in consolidation chemo-immunotherapy protocols.

8.
J Fungi (Basel) ; 9(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36836357

RESUMEN

Candida auris has recently emerged as a multidrug-resistant yeast implicated in various healthcare-associated invasive infections and hospital outbreaks. In the current study, we report the first five intensive care unit (ICU) cases affected by C. auris isolates in Greece, during October 2020-January 2022. The ICU of the hospital was converted to a COVID-19 unit on 25 February 2021, during the third wave of COVID-19 in Greece. Identification of the isolates was confirmed by Matrix Assisted Laser Desorption Ionization Time of Flight mass spectroscopy (MALDI-TOF]. Antifungal susceptibility testing was performed by the EUCAST broth microdilution method. Based on the tentative CDC MIC breakpoints, all five C. auris isolates were resistant to fluconazole (≥32 µg/mL), while three of them exhibited resistance to amphotericin B (≥2 µg/mL). The environmental screening also revealed the dissemination of C. auris in the ICU. Molecular characterization of C. auris clinical and environmental isolates was performed by MultiLocus Sequence Typing (MLST) of a set of four genetic loci, namely ITS, D1/D2, RPB1 and RPB2, encoding for the internal transcribed spacer region (ITS) of the ribosomal subunit, the large ribosomal subunit region and the RNA polymerase II largest subunit, respectively. MLST analysis showed that all isolates possessed identical sequences in the four genetic loci and clustered with the South Asian clade I strains. Additionally, PCR amplification and sequencing of the CJJ09_001802 genetic locus, encoding for the "nucleolar protein 58" that contains clade-specific repeats was performed. Sanger sequence analysis of the TCCTTCTTC repeats within CJJ09_001802 locus also assigned the C. auris isolates to the South Asian clade I. Our study confirms that C. auris is an emerging yeast pathogen in our region, especially in the setting of the ongoing COVID-19 worldwide pandemic. Adherence to strict infection control is needed to restrain further spread of the pathogen.

9.
FEBS J ; 290(5): 1384-1392, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34653312

RESUMEN

In-depth analysis of SARS-CoV-2 biology and pathogenesis is rapidly unraveling the mechanisms through which the virus induces all aspects of COVID-19 pathology. Emergence of hundreds of variants and several important variants of concern has focused research on the mechanistic elucidation of virus mutagenesis. RNA viruses evolve quickly either through the error-prone polymerase or the RNA-editing machinery of the cell. In this review, we are discussing the links between cellular senescence, a natural aging process that has been recently linked to SARS-CoV-2 infection, and virus mutagenesis through the RNA-editing enzymes APOBEC. The action of APOBEC, enhanced by cellular senescence, is hypothesized to assist the emergence of novel variants, called quasispecies, within a cell or organism. These variants when introduced to the community may lead to the generation of a variant of concern, depending on fitness and transmissibility of the new genome. Such a mechanism of virus evolution may highlight the importance of inhibitors of cellular senescence during SARS-CoV-2 clinical treatment.


Asunto(s)
COVID-19 , Virus , Humanos , SARS-CoV-2/genética , COVID-19/genética , Cuasiespecies , Virus/genética , Senescencia Celular/genética , ARN
10.
Viruses ; 14(11)2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36423130

RESUMEN

Hepatitis C virus (HCV) core protein is a multifunctional protein that is involved in the proliferation, inflammation, and apoptosis mechanism of hepatocytes. HCV core protein genetic variability has been implicated in various outcomes of HCV pathology and treatment. In the present study, we aimed to analyze the role of the HCV core protein in tumor necrosis factor α (TNFα)-induced death under the viewpoint of HCV genetic variability. Immortalized hepatocytes (IHH), and not the Huh 7.5 hepatoma cell line, stably expressing HCV subtype 4a and HCV subtype 4f core proteins showed that only the HCV 4a core protein could increase sensitivity to TNFα-induced death. Development of two transgenic mice expressing the two different core proteins under the liver-specific promoter of transthyretin (TTR) allowed for the in vivo assessment of the role of the core in TNFα-induced death. Using the TNFα-dependent model of lipopolysaccharide/D-galactosamine (LPS/Dgal), we were able to recapitulate the in vitro results in IHH cells in vivo. Transgenic mice expressing the HCV 4a core protein were more susceptible to the LPS/Dgal model, while mice expressing the HCV 4f core protein had the same susceptibility as their littermate controls. Transcriptome analysis in liver biopsies from these transgenic mice gave insights into HCV core molecular pathogenesis while linking HCV core protein genetic variability to differential pathology in vivo.


Asunto(s)
Hepacivirus , Hepatitis C , Ratones , Animales , Hepacivirus/genética , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/metabolismo , Hepatitis C/metabolismo , Hepatocitos , Genotipo , Ratones Transgénicos
11.
Trop Med Infect Dis ; 7(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36136647

RESUMEN

West Nile virus (WNV) is a mosquito-borne flavivirus that has emerged as a major cause of viral encephalitis and meningitis, rarely leading to death. Several risk factors have been discussed in the past concerning the severity of the disease, while few reports have focused on precipitating conditions that determine of WNV-related death. Studies on cohorts of patients suffering of West Nile disease (WND) usually encompass low numbers of deceased patients as a result of the rarity of the event. In this systematic review and critical analysis of 428 published case studies and case series, we sought to evaluate and highlight critical parameters of WND-related death. We summarized the symptoms, comorbidities, and treatment strategies related to WND in all published cases of patients that included clinical features. Symptoms such as altered mental status and renal problems presented increased incidence among deceased patients, while these patients presented increased cerebrospinal fluid (CSF) glucose. Our analysis also highlights underestimated comorbidities such as pulmonary disease to act as precipitating conditions in WND, as they were significantly increased amongst deceased patients. CSF glucose and the role of pulmonary diseases need to be revaluated either retrospectively or prospectively in WND patient cohorts, as they may be linked to increased mortality risk.

12.
Viruses ; 14(8)2022 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-36016316

RESUMEN

Hepatitis C virus is the major cause of chronic liver diseases and the only cytoplasmic RNA virus known to be oncogenic in humans. The viral genome gives rise to ten mature proteins and to additional proteins, which are the products of alternative translation initiation mechanisms. A protein-known as ARFP (alternative reading frame protein) or Core+1 protein-is synthesized by an open reading frame overlapping the HCV Core coding region in the (+1) frame of genotype 1a. Almost 20 years after its discovery, we still know little of the biological role of the ARFP/Core+1 protein. Here, our differential proteomic analysis of stable hepatoma cell lines expressing the Core+1/Long isoform of HCV-1a relates the expression of the Core+1/Long isoform with the progression of the pathology of HCV liver disease to cancer.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Hepacivirus/genética , Hepacivirus/metabolismo , Antígenos de la Hepatitis C , Humanos , Isoformas de Proteínas/metabolismo , Proteómica , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/metabolismo
13.
Molecules ; 27(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35807306

RESUMEN

Ethnopharmacology, through the description of the beneficial effects of plants, has provided an early framework for the therapeutic use of natural compounds. Natural products, either in their native form or after crude extraction of their active ingredients, have long been used by different populations and explored as invaluable sources for drug design. The transition from traditional ethnopharmacology to drug discovery has followed a straightforward path, assisted by the evolution of isolation and characterization methods, the increase in computational power, and the development of specific chemoinformatic methods. The deriving extensive exploitation of the natural product chemical space has led to the discovery of novel compounds with pharmaceutical properties, although this was not followed by an analogous increase in novel drugs. In this work, we discuss the evolution of ideas and methods, from traditional ethnopharmacology to in silico drug discovery, applied to natural products. We point out that, in the past, the starting point was the plant itself, identified by sustained ethnopharmacological research, with the active compound deriving after extensive analysis and testing. In contrast, in recent years, the active substance has been pinpointed by computational methods (in silico docking and molecular dynamics, network pharmacology), followed by the identification of the plant(s) containing the active ingredient, identified by existing or putative ethnopharmacological information. We further stress the potential pitfalls of recent in silico methods and discuss the absolute need for in vitro and in vivo validation as an absolute requirement. Finally, we present our contribution to natural products' drug discovery by discussing specific examples, applying the whole continuum of this rapidly evolving field. In detail, we report the isolation of novel antiviral compounds, based on natural products active against influenza and SARS-CoV-2 and novel substances active on a specific GPCR, OXER1.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Productos Biológicos/química , Descubrimiento de Drogas/métodos , Etnofarmacología/métodos , Plantas/química , SARS-CoV-2
14.
Virus Evol ; 8(1): veac036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35505691

RESUMEN

Mosquitoes are the most important vectors of emerging infectious diseases. During the past decade, our understanding of the diversity of viruses they carry has greatly expanded. Most of these viruses are considered mosquito-specific, but there is increasing evidence that these viruses may affect the vector competence of mosquitoes. Metagenomics approaches have focused on specific mosquito species for the identification of what is called the core virome. Despite the fact that, in most ecosystems, multiple species may participate in virus emergence and circulation, there is a lack of understanding of the virus-carrier/host network for both vector-borne and mosquito-specific viruses. Here, we studied the core virome of mosquitoes in a diverse local ecosystem that had 24 different mosquito species. The analysis of the viromes of these 24 mosquito species resulted in the identification of 34 viruses, which included 15 novel viruses, as determined according to the species demarcation criteria of the respective virus families. Most of the mosquito species had never been analysed previously, and a comparison of the individual viromes of the 24 mosquito species revealed novel relationships among mosquito species and virus families. Groups of related viruses and mosquito species from multiple genera formed a complex web in the local ecosystem. Furthermore, analyses of the virome of mixed-species pools of mosquitoes from representative traps of the local ecosystem showed almost complete overlap with the individual-species viromes identified in the study. Quantitative analysis of viruses' relative abundance revealed a linear relationship to the abundance of the respective carrier/host mosquito species, supporting the theory of a stable core virome in the most abundant species of the local ecosystem. Finally, our study highlights the importance of using a holistic approach to investigating mosquito viromes relationships in rich and diverse ecosystems.

15.
Comput Struct Biotechnol J ; 20: 2091-2111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432786

RESUMEN

The discovery and facile synthesis of a new class of sartan-like arterial antihypertensive drugs (angiotensin receptor blockers [ARBs]), subsequently referred to as "bisartans" is reported. In vivo results and complementary molecular modelling presented in this communication indicate bisartans may be beneficial for the treatment of not only heart disease, diabetes, renal dysfunction, and related illnesses, but possibly COVID-19. Bisartans are novel bis-alkylated imidazole sartan derivatives bearing dual symmetric anionic biphenyl tetrazole moieties. In silico docking and molecular dynamics studies revealed bisartans exhibited higher binding affinities for the ACE2/spike protein complex (PDB 6LZG) compared to all other known sartans. They also underwent stable docking to the Zn2 + domain of the ACE2 catalytic site as well as the critical interfacial region between ACE2 and the SARS-CoV-2 receptor binding domain. Additionally, semi-stable docking of bisartans at the arginine-rich furin-cleavage site of the SARS-CoV-2 spike protein (residues 681-686) required for virus entry into host cells, suggest bisartans may inhibit furin action thereby retarding viral entry into host cells. Bisartan tetrazole groups surpass nitrile, the pharmacophoric "warhead" of PF-07321332, in its ability to disrupt the cysteine charge relay system of 3CLpro. However, despite the apparent targeting of multifunctional sites, bisartans do not inhibit SARS-CoV-2 infection in bioassays as effectively as PF-07321332 (Paxlovid).

16.
Front Microbiol ; 13: 802577, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330767

RESUMEN

Biting midges (Culicoides) are vectors of arboviruses of both veterinary and medical importance. The surge of emerging and reemerging vector-borne diseases and their expansion in geographical areas affected by climate change has increased the importance of understanding their capacity to contribute to novel and emerging infectious diseases. The study of Culicoides virome is the first step in the assessment of this potential. In this study, we analyzed the RNA virome of 10 Culicoides species within the geographical area of Thrace in the southeastern part of Europe, a crossing point between Asia and Europe and important path of various arboviruses, utilizing the Ion Torrent next-generation sequencing (NGS) platform and a custom bioinformatics pipeline based on TRINITY assembler and alignment algorithms. The analysis of the RNA virome of 10 Culicoides species resulted in the identification of the genomic signatures of 14 novel RNA viruses, including three fully assembled viruses and four segmented viruses with at least one segment fully assembled, most of which were significantly divergent from previously identified related viruses from the Solemoviridae, Phasmaviridae, Phenuiviridae, Reoviridae, Chuviridae, Partitiviridae, Orthomyxoviridae, Rhabdoviridae, and Flaviviridae families. Each Culicoides species carried a species-specific set of viruses, some of which are related to viruses from other insect vectors in the same area, contributing to the idea of a virus-carrier web within the ecosystem. The identified viruses not only expand our current knowledge on the virome of Culicoides but also set the basis of the genetic diversity of such viruses in the area of southeastern Europe. Furthermore, our study highlights that such metagenomic approaches should include as many species as possible of the local virus-carrier web that interact and share the virome of a geographical area.

17.
Eur Respir J ; 60(2)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35086840

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory system can progress to a multisystemic disease with aberrant inflammatory response. Cellular senescence promotes chronic inflammation, named senescence-associated secretory phenotype (SASP). We investigated whether coronavirus disease 2019 (COVID-19) is associated with cellular senescence and SASP. METHODS: Autopsy lung tissue samples from 11 COVID-19 patients and 43 age-matched non-COVID-19 controls with similar comorbidities were analysed by immunohistochemistry for SARS-CoV-2, markers of senescence and key SASP cytokines. Virally induced senescence was functionally recapitulated in vitro, by infecting epithelial Vero-E6 cells and a three-dimensional alveosphere system of alveolar type 2 (AT2) cells with SARS-CoV-2 strains isolated from COVID-19 patients. RESULTS: SARS-CoV-2 was detected by immunocytochemistry and electron microscopy predominantly in AT2 cells. Infected AT2 cells expressed angiotensin-converting enzyme 2 and exhibited increased senescence (p16INK4A and SenTraGor positivity) and interleukin (IL)-1ß and IL-6 expression. In vitro, infection of Vero-E6 cells with SARS-CoV-2 induced senescence (SenTraGor), DNA damage (γ-H2AX) and increased cytokine (IL-1ß, IL-6, CXCL8) and apolipoprotein B mRNA-editing (APOBEC) enzyme expression. Next-generation sequencing analysis of progenies obtained from infected/senescent Vero-E6 cells demonstrated APOBEC-mediated SARS-CoV-2 mutations. Dissemination of the SARS-CoV-2-infection and senescence was confirmed in extrapulmonary sites (kidney and liver) of a COVID-19 patient. CONCLUSIONS: We demonstrate that in severe COVID-19, AT2 cells infected by SARS-CoV-2 exhibit senescence and a proinflammatory phenotype. In vitro, SARS-CoV-2 infection induces senescence and inflammation. Importantly, infected senescent cells may act as a source of SARS-CoV-2 mutagenesis mediated by APOBEC enzymes. Therefore, SARS-CoV-2-induced senescence may be an important molecular mechanism of severe COVID-19, disease persistence and mutagenesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Senescencia Celular , Citocinas/metabolismo , Humanos , Inflamación , Interleucina-6 , Pulmón/metabolismo , Mutagénesis , Fenotipo
18.
Germs ; 12(3): 384-393, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37680672

RESUMEN

Introduction: Hepatitis C virus (HCV) infection is a prime cause of chronic hepatitis worldwide, that often silently progresses to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Notably, the majority of individuals infected with HCV develop symptoms at late stages, often associated with liver damage that cannot revert after virus clearance. Thus, current antiviral therapy alone is rather insufficient to eliminate the global burden of HCV in the near future.During the past few years, vitamin D deficiency as well as certain single nucleotide polymorphisms in the vitamin D receptor (VDR) gene have been associated with liver fibrosis. Therefore, the aim of the present study was to investigate the possible correlation between VDR polymorphisms ApaI (rs7975232) and TaqI (rs731236) and the fibrosis stage of patients with HCV infection from Thrace, Greece. Methods: Eighty-one patients with HCV infection underwent transient elastography for the assessment of their fibrosis stage, and PCR-restriction fragment length polymorphism (RFLP) genotyping for VDR ApaI and TaqI polymorphisms. VDR genotypes were then statistically associated with the patients' fibrosis stage using ordinal regression models. Results: Non-cirrhotic stages were positively correlated with TaqI TT genotype (p=0.003) and negatively correlated with TaqI TC genotype (p=0.007). In the presence of Hardy-Weinberg equilibrium and linkage disequilibrium between the two VDR polymorphisms, mild fibrosis stages (F0-2) were correlated with ApaI/TaqI GG/TT (p=0.002) and TG/TT (p=0.008) genotypes, while cirrhotic stage F4 was associated with ApaI/TaqI TG/TC genotype (p=0.038). Conclusions: TaqI TT and ApaI/TaqI GG/TT, TG/TT and TG/TC genotypes could be explored as prognostic genetic markers for fibrosis susceptibility in HCV patients.

19.
Transbound Emerg Dis ; 69(3): 1606-1616, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33908152

RESUMEN

In the present study, the course of SARS-CoV-2 natural infection in two asymptomatic cats, which were negative for immunosuppressive retroviral infections, is investigated. The source of the virus for the cats was their COVID-19-affected owner, with whom they were in continuous proximity in a small household setting. The owner's signs included fatigue, sneezing, anosmia and loss of taste, and diagnosis was confirmed 4 days after symptom onset. Oropharyngeal and faecal swabs were collected from the cats, to investigate the course of SARS-CoV-2 RNA concentrations, as well as the directionality of the chain of virus transmission. Both infected cats were real-time RT-PCR-positive on various time-points. Pharyngeal shedding of at least 6 days was observed in them, with high SARS-CoV-2 titres (> 7 Log10 copies/swab) on the first sampling time-point, that is, 7 days after the onset of owner's clinical signs. In one cat, after the initial decline, slightly increasing virus titres were measured 3 to 6 days after the first real-time RT-PCR-positive swab. Serological testing of this cat revealed absence of seroconversion. The course of viral RNA concentrations in the faecal swabs of the other cat was similar to that in its pharynx. The detected SARS-CoV-2 strains, from both infected cats and their owner, underwent whole-genome sequencing, revealing the absence of emergence of cross-species adaptive mutations in cats. The results support the notion that human SARS-CoV-2 strains are relatively well-adapted to cats. It is still unclear whether asymptomatic animals could play a role in COVID-19 epidemiology, in case of interaction with naïve animals and/or people. Our findings highlight difficulties in SARS-CoV-2 transmission to cats, as neither the two infected cats nor their owner was able to transmit the virus to a third cat living in the same small flat, despite their very close contact during the days corresponding to high virus shedding.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Animales , COVID-19/veterinaria , Enfermedades de los Gatos/diagnóstico , Gatos , Humanos , Mutación , ARN Viral/genética , SARS-CoV-2/genética , Esparcimiento de Virus
20.
Viruses ; 15(1)2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36680109

RESUMEN

The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presented an unprecedented public health threat, being the cause of one of the most devastating pandemics in history [...].


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias , Grecia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA