RESUMEN
Innovative tools suitable for chemical risk assessment are being developed in numerous domains, such as non-target chemical analysis, omics, and computational approaches. These methods will also be critical components in an efficient early warning system (EWS) for the identification of potentially hazardous chemicals. Much knowledge is missing for current use chemicals and thus computational methodologies complemented with fast screening techniques will be critical. This paper reviews current computational tools, emphasizing those that are accessible and suitable for the screening of new and emerging risk chemicals (NERCs). The initial step in a computational EWS is an automatic and systematic search for NERCs in literature and database sources including grey literature, patents, experimental data, and various inventories. This step aims at reaching curated molecular structure data along with existing exposure and hazard data. Next, a parallel assessment of exposure and effects will be performed, which will input information into the weighting of an overall hazard score and, finally, the identification of a potential NERC. Several challenges are identified and discussed, such as the integration and scoring of several types of hazard data, ranging from chemical fate and distribution to subtle impacts in specific species and tissues. To conclude, there are many computational systems, and these can be used as a basis for an integrated computational EWS workflow that identifies NERCs automatically.
RESUMEN
BACKGROUND: Phthalates are ubiquitous in the environment. Despite short half-lives, chronic exposure can lead to endocrine disruption. The safety of phthalate substitute DINCH is unclear. OBJECTIVE: To evaluate associations between urinary concentrations of phthalate/DINCH metabolites and body mass index (BMI) z-score among children and adolescents. METHOD: We used Human Biomonitoring for Europe Aligned Studies data from 2876 children (12 studies, 6-12 years, 2014-2021) and 2499 adolescents (10 studies, 12-18 years, 2014-2021) with up to 14 phthalate/DINCH urinary metabolites. We used multilevel linear regression to assess associations between phthalate/DINCH concentrations and BMI z-scores, testing effect modification by sex. In a subset, Bayesian kernel machine regression (BKMR) and quantile-based g-computation assessed important predictors and mixture effects. RESULTS: In children, we found few associations in single pollutant models and no interactions by sex (p-interaction > 0.1). BKMR detected no relevant exposures (posterior inclusion probabilities, PIPs < 0.25), nor joint mixture effect. In adolescent single pollutant analysis, mono-ethyl phthalate (MEP) concentrations were associated with higher BMI z-score in males (ß = 0.08, 95 % CI: 0.001,0.15, per interquartile range increase in ln-transformed concentrations, p-interaction = 0.06). Conversely, mono-isobutyl phthalate (MiBP) was associated with a lower BMI z-score in both sexes (ß = -0.13, 95 % CI: -0.19, -0.07, p-interaction = 0.74), as was sum of di(2-ethylhexyl) phthalate (∑DEHP) metabolites in females only (ß = -0.08, 95 % CI: -0.14, -0.02, p-interaction = 0.01). In BKMR, higher BMI z-scores were predicted by MEP (PIP=0.90) and MBzP (PIP=0.84) in males. Lower BMI z-scores were predicted by MiBP (PIP=0.999), OH-MIDP (PIP=0.88) and OH-MINCH (PIP=0.72) in both sexes, less robustly by DEHP (PIP=0.61) in females. In quantile g-computation, the overall mixture effect was null for males, and trended negative for females (ß = -0.11, 95 % CI: -0.25, 0.03, per joint exposure quantile). CONCLUSION: In this large Europe-wide study, we found age/sex-specific differences between phthalate metabolites and BMI z-score, stronger in adolescents. Longitudinal studies with repeated phthalate measurements are needed.
Asunto(s)
Índice de Masa Corporal , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Ácidos Ftálicos , Humanos , Ácidos Ftálicos/orina , Adolescente , Niño , Europa (Continente) , Estudios Transversales , Masculino , Femenino , Contaminantes Ambientales/orina , Contaminantes Ambientales/metabolismo , Exposición a Riesgos Ambientales/análisis , Monitoreo BiológicoRESUMEN
BACKGROUND: Seafood is a major source of vital nutrients for optimal fetal growth, but at the same time is the main source of exposure to methylmercury (MeHg), an established neurodevelopmental toxicant. Pregnant women must be provided with dietary advice so as to include safely fish in their diet for nutrition and mercury control. The aim of this work is to present the design of a multicentre randomized control trial (RCT), which combines human biomonitoring (HBM) with dietary interventions using seafood consumption advice to pregnant women for MeHg control, and to collect information about other possible sources of exposure to mercury. It also presents the materials developed for the implementation of the study and the characteristics of the study participants, which were self-reported in the first trimester of pregnancy. METHODS: The "HBM4EU-MOM" RCT was performed in the frame of the European Human Biomonitoring Initiative (HBM4EU) in five coastal, high fish-consuming European countries (Cyprus, Greece, Spain, Portugal and Iceland). According to the study design, pregnant women (≥120/country, ≤20 weeks gestational age) provided a hair sample for total mercury assessment (THg) and personal information relevant to the study (e.g., lifestyle, pregnancy status, diet before and during the pregnancy, information on seafood and factors related to possible non-dietary exposures to mercury) during the first trimester of pregnancy. After sampling, participants were randomly assigned to "control" (habitual practices) or "intervention" (received the harmonized HBM4EU-MOM dietary advice for fish consumption during the pregnancy and were encouraged to follow it). Around child delivery, participants provided a second hair sample and completed another tailored questionnaire. RESULTS: A total of 654 women aged 18-45 years were recruited in 2021 in the five countries, primarily through their health-care providers. The pre-pregnancy BMI of the participants ranged from underweight to obese, but was on average within the healthy range. For 73% of the women, the pregnancy was planned. 26% of the women were active smokers before the pregnancy and 8% continued to smoke during the pregnancy, while 33% were passive smokers before pregnancy and 23% remained passively exposed during the pregnancy. 53% of the women self-reported making dietary changes for their pregnancy, with 74% of these women reporting making the changes upon learning of their pregnancy. Of the 43% who did not change their diet for the pregnancy, 74% reported that their diet was already balanced, 6% found it difficult to make changes and 2% were unsure of what changes to make. Seafood consumption did not change significantly before and during the first trimester of pregnancy (overall average â¼8 times per month), with the highest frequency reported in Portugal (≥15 times per month), followed by Spain (≥7 times per month). During the first-trimester of pregnancy, 89% of the Portuguese women, 85% of the Spanish women and <50% of Greek, Cypriot and Icelandic women reported that they had consumed big oily fish. Relevant to non-dietary exposure sources, most participants (>90%) were unaware of safe procedures for handling spillage from broken thermometers and energy-saving lamps, though >22% experienced such an incident (>1 year ago). 26% of the women had dental amalgams. â¼1% had amalgams placed and â¼2% had amalgams removed during peri-pregnancy. 28% had their hair dyed in the past 3 months and 40% had body tattoos. 8% engaged with gardening involving fertilizers/pesticides and 19% with hobbies involving paints/pigments/dyes. CONCLUSIONS: The study design materials were fit for the purposes of harmonization and quality-assurance. The harmonized information collected from pregnant women suggests that it is important to raise the awareness of women of reproductive age and pregnant women about how to safely include fish in their diet and to empower them to make proper decisions for nutrition and control of MeHg, as well as other chemical exposures.
Asunto(s)
Mercurio , Compuestos de Metilmercurio , Animales , Femenino , Humanos , Embarazo , Dieta , Europa (Continente) , Contaminación de Alimentos/análisis , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Estudios Multicéntricos como Asunto , Mujeres Embarazadas , Ensayos Clínicos Controlados Aleatorios como Asunto , Alimentos Marinos/análisis , Adolescente , Adulto Joven , Adulto , Persona de Mediana EdadRESUMEN
The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.
RESUMEN
As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.
Asunto(s)
Arsénico , Contaminantes Ambientales , Fluorocarburos , Plaguicidas , Adulto Joven , Humanos , Niño , Adolescente , Monitoreo Biológico , Contaminantes Ambientales/análisis , Cadmio/análisis , Arsénico/análisis , Plaguicidas/análisis , Fluorocarburos/análisis , Biomarcadores , AcrilamidasRESUMEN
Phthalates are mainly used as plasticizers for polyvinyl chloride (PVC). Exposure to several phthalates is associated with different adverse effects most prominently on the development of reproductive functions. The HBM4EU Aligned Studies (2014-2021) have investigated current European exposure to ten phthalates (DEP, BBzP, DiBP, DnBP, DCHP, DnPeP, DEHP, DiNP, DiDP, DnOP) and the substitute DINCH to answer the open policy relevant questions which were defined by HBM4EU partner countries and EU institutions as the starting point of the programme. The exposure dataset includes â¼5,600 children (6-11 years) and adolescents (12-18 years) from up to 12 countries per age group and covering the North, East, South and West European regions. Study data from participating studies were harmonised with respect to sample size and selection of participants, selection of biomarkers, and quality and comparability of analytical results to provide a comparable perspective of European exposure. Phthalate and DINCH exposure were deduced from urinary excretions of metabolites, where concentrations were expressed as their key descriptor geometric mean (GM) and 95th percentile (P95). This study aims at reporting current exposure levels and differences in these between European studies and regions, as well as comparisons to human biomonitoring guidance values (HBM-GVs). GMs for children were highest for ∑DEHP metabolites (33.6 µg/L), MiBP (26.6 µg/L), and MEP (24.4 µg/L) and lowest for∑DiDP metabolites (1.91 µg/L) and ∑DINCH metabolites (3.57 µg/L). In adolescents highest GMs were found for MEP (43.3 µg/L), ∑DEHP metabolites (28.8 µg/L), and MiBP (25.6 µg/L) and lowest for ∑DiDP metabolites (= 2.02 µg/L) and ∑DINCH metabolites (2.51 µg/L). In addition, GMs and P95 stratified by European region, sex, household education level, and degree of urbanization are presented. Differences in average biomarker concentrations between sampling sites (data collections) ranged from factor 2 to 9. Compared to the European average, children in the sampling sites OCC (Denmark), InAirQ (Hungary), and SPECIMEn (The Netherlands) had the lowest concentrations across all metabolites and ESTEBAN (France), NAC II (Italy), and CROME (Greece) the highest. For adolescents, comparably higher metabolite concentrations were found in NEB II (Norway), PCB cohort (Slovakia), and ESTEBAN (France), and lower concentrations in POLAES (Poland), FLEHS IV (Belgium), and GerES V-sub (Germany). Multivariate analyses (Survey Generalized Linear Models) indicate compound-specific differences in average metabolite concentrations between the four European regions. Comparison of individual levels with HBM-GVs revealed highest rates of exceedances for DnBP and DiBP, with up to 3 and 5%, respectively, in children and adolescents. No exceedances were observed for DEP and DINCH. With our results we provide current, detailed, and comparable data on exposure to phthalates in children and - for the first time - in adolescents, and - for the first time - on DINCH in children and adolescents of all four regions of Europe which are particularly suited to inform exposure and risk assessment and answer open policy relevant questions.
Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Humanos , Niño , Adolescente , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Ácidos Ftálicos/metabolismoRESUMEN
Within the European Human Biomonitoring (HBM) Initiative HBM4EU we derived HBM indicators that were designed to help answering key policy questions and support chemical policies. The result indicators convey information on chemicals exposure of different age groups, sexes, geographical regions and time points by comparing median exposure values. If differences are observed for one group or the other, policy measures or risk management options can be implemented. Impact indicators support health risk assessment by comparing exposure values with health-based guidance values, such as human biomonitoring guidance values (HBM-GVs). In general, the indicators should be designed to translate complex scientific information into short and clear messages and make it accessible to policy makers but also to a broader audience such as stakeholders (e.g. NGO's), other scientists and the general public. Based on harmonized data from the HBM4EU Aligned Studies (2014-2021), the usefulness of our indicators was demonstrated for the age group children (6-11 years), using two case examples: one phthalate (Diisobutyl phthalate: DiBP) and one non-phthalate substitute (Di-isononyl cyclohexane-1,2- dicarboxylate: DINCH). For the comparison of age groups, these were compared to data for teenagers (12-18 years), and time periods were compared using data from the DEMOCOPHES project (2011-2012). Our result indicators proved to be suitable for demonstrating the effectiveness of policy measures for DiBP and the need of continuous monitoring for DINCH. They showed similar exposure for boys and girls, indicating that there is no need for gender focused interventions and/or no indication of sex-specific exposure patterns. They created a basis for a targeted approach by highlighting relevant geographical differences in internal exposure. An adequate data basis is essential for revealing differences for all indicators. This was particularly evident in our studies on the indicators on age differences. The impact indicator revealed that health risks based on exposure to DiBP cannot be excluded. This is an indication or flag for risk managers and policy makers that exposure to DiBP still is a relevant health issue. HBM indicators derived within HBM4EU are a valuable and important complement to existing indicator lists in the context of environment and health. Their applicability, current shortcomings and solution strategies are outlined.
Asunto(s)
Ácidos Ftálicos , Masculino , Niño , Femenino , Adolescente , Humanos , Políticas , Monitoreo Biológico , Ácidos CarboxílicosRESUMEN
BACKGROUND: Many phthalates are environmental pollutants and toxic to humans. Following phthalate regulations, human exposure to phthalates has globally decreased with time in European countries, the US and Korea. Conversely, exposure to their substitutes DEHT and/or DINCH has increased. In other countries, including China, little is known on the time-trends in human exposure to these plasticizers. OBJECTIVE: We aimed to estimate time-trends in the urinary concentrations of phthalates, DEHT, and DINCH metabolites, in general population from non-European countries, in the last decade. METHODS: We compiled human biomonitoring (HBM) data from 123 studies worldwide in a database termed "PhthaLit". We analyzed time-trends in the urinary concentrations of the excreted metabolites of various phthalates as well as DEHT and DINCH per metabolite, age group, and country/region, in 2009-2019. Additionally, we compared urinary metabolites levels between continents. RESULTS: We found solid time-trends in adults and/or children from the US, Canada, China and Taiwan. DEHP metabolites decreased in the US and Canada. Conversely in Asia, 5oxo- and 5OH-MEHP (DEHP metabolites) increased in Chinese children. For low-weight phthalates, the trends showed a mixed picture between metabolites and countries. Notably, MnBP (a DnBP metabolite) increased in China. The phthalate substitutes DEHT and DINCH markedly increased in the US. SIGNIFICANCE: We addressed the major question of time-trends in human exposure to phthalates and their substitutes and compared the results in different countries worldwide. IMPACT: Phthalates account for more than 50% of the plasticizer world market. Because of their toxicity, some phthalates have been regulated. In turn, the consumption of non-phthalate substitutes, such as DEHT and DINCH, is growing. Currently, phthalates and their substitutes show high detection percentages in human urine. Concerning time-trends, several studies, mainly in Europe, show a global decrease in phthalate exposure, and an increase in the exposure to phthalate substitutes in the last decade. In this study, we address the important question of time-trends in human exposure to phthalates and their substitutes and compare the results in different countries worldwide.
Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Ácidos Ftálicos , Adulto , Niño , Humanos , Ácidos Ftálicos/orina , Contaminantes Ambientales/orina , Plastificantes/análisis , Plastificantes/metabolismo , América del Norte , Exposición a Riesgos Ambientales/análisisRESUMEN
While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA.
Asunto(s)
Rutas de Resultados Adversos , Humanos , Medición de Riesgo/métodosRESUMEN
Human biomonitoring has become a pivotal tool for supporting chemicals' policies. It provides information on real-life human exposures and is increasingly used to prioritize chemicals of health concern and to evaluate the success of chemical policies. Europe has launched the ambitious REACH program in 2007 to improve the protection of human health and the environment. In October 2020 the EU commission published its new chemicals strategy for sustainability towards a toxic-free environment. The European Parliament called upon the commission to collect human biomonitoring data to support chemical's risk assessment and risk management. This manuscript describes the organization of the first HBM4EU-aligned studies that obtain comparable human biomonitoring (HBM) data of European citizens to monitor their internal exposure to environmental chemicals. The HBM4EU-aligned studies build on existing HBM capacity in Europe by aligning national or regional HBM studies. The HBM4EU-aligned studies focus on three age groups: children, teenagers, and adults. The participants are recruited between 2014 and 2021 in 11 to 12 primary sampling units that are geographically distributed across Europe. Urine samples are collected in all age groups, and blood samples are collected in children and teenagers. Auxiliary information on socio-demographics, lifestyle, health status, environment, and diet is collected using questionnaires. In total, biological samples from 3137 children aged 6-12 years are collected for the analysis of biomarkers for phthalates, HEXAMOLL® DINCH, and flame retardants. Samples from 2950 teenagers aged 12-18 years are collected for the analysis of biomarkers for phthalates, Hexamoll® DINCH, and per- and polyfluoroalkyl substances (PFASs), and samples from 3522 adults aged 20-39 years are collected for the analysis of cadmium, bisphenols, and metabolites of polyaromatic hydrocarbons (PAHs). The children's group consists of 50.4% boys and 49.5% girls, of which 44.1% live in cities, 29.0% live in towns/suburbs, and 26.8% live in rural areas. The teenagers' group includes 50.6% girls and 49.4% boys, with 37.7% of residents in cities, 31.2% in towns/suburbs, and 30.2% in rural areas. The adult group consists of 52.6% women and 47.4% men, 71.9% live in cities, 14.2% in towns/suburbs, and only 13.4% live in rural areas. The study population approaches the characteristics of the general European population based on age-matched EUROSTAT EU-28, 2017 data; however, individuals who obtained no to lower educational level (ISCED 0-2) are underrepresented. The data on internal human exposure to priority chemicals from this unique cohort will provide a baseline for Europe's strategy towards a non-toxic environment and challenges and recommendations to improve the sampling frame for future EU-wide HBM surveys are discussed.
Asunto(s)
Monitoreo Biológico , Contaminantes Ambientales , Adolescente , Adulto , Cadmio/análisis , Niño , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Europa (Continente) , Femenino , Humanos , Masculino , Medición de RiesgoRESUMEN
The aim of this work was to demonstrate how human biomonitoring (HBM) data can be used to assess cancer risks for workers and the general population. Ortho-toluidine, OT (CAS 95-53-4) is an aniline derivative which is an animal and human carcinogen and may cause methemoglobinemia. OT is used as a curing agent in epoxy resins and as intermediate in producing herbicides, dyes, and rubber chemicals. A risk assessment was performed for OT by using existing HBM studies. The urinary mass-balance methodology and generic exposure reconstruction PBPK modelling were both used for the estimation of the external intake levels corresponding to observed urinary levels. The external exposures were subsequently compared to cancer risk levels obtained from the evaluation by the Scientific Committee on Occupational Exposure Limits (SCOEL). It was estimated that workers exposed to OT have a cancer risk of 60 to 90:106 in the worst-case scenario (0.9 mg/L in urine). The exposure levels and cancer risk of OT in the general population were orders of magnitude lower when compared to workers. The difference between the output of urinary mass-balance method and the general PBPK model was approximately 30%. The external exposure levels calculated based on HBM data were below the binding occupational exposure level (0.5 mg/m3) set under the EU Carcinogens and Mutagens Directive.
RESUMEN
The development of the exposome concept has been one of the hallmarks of environmental and health research for the last decade. The exposome encompasses the life course environmental exposures including lifestyle factors from the prenatal period onwards. It has inspired many research programs and is expected to influence environmental and health research, practices, and policies. Yet, the links bridging toxicology and the exposome concept have not been well developed. In this review, we describe how the exposome framework can interface with and influence the field of toxicology, as well as how the field of toxicology can help advance the exposome field by providing the needed mechanistic understanding of the exposome impacts on health. Indeed, exposome-informed toxicology is expected to emphasize several orientations including (1) developing approaches integrating multiple stressors, in particular chemical mixtures, as well as the interaction of chemicals with other stressors, (2) using mechanistic frameworks such as the adverse outcome pathways to link the different stressors with toxicity outcomes, (3) characterizing the mechanistic basis of long-term effects by distinguishing different patterns of exposures and further exploring the environment-DNA interface through genetic and epigenetic studies, and (4) improving the links between environmental and human health, in particular through a stronger connection between alterations in our ecosystems and human toxicology. The exposome concept provides the linkage between the complex environment and contemporary mechanistic toxicology. What toxicology can bring to exposome characterization is a needed framework for mechanistic understanding and regulatory outcomes in risk assessment.
Asunto(s)
Exposoma , Ecosistema , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Estilo de Vida , Embarazo , Medición de RiesgoRESUMEN
The exposome paradigm through an integrated approach to investigating the impact of perinatal exposure to metals on child neurodevelopment in two cohorts carried out in Slovenia (PHIME cohort) and Greece (HERACLES cohort) respectively, is presented herein. Heavy metals are well-known neurotoxicants with well-established links to impaired neurodevelopment. The links between in utero and early-life exposure to metals, metabolic pathway dysregulation, and neurodevelopmental disorders were drawn through urinary and plasma untargeted metabolomics analysis, followed by the combined application of in silico and biostatistical methods. Heavy metal prenatal and postnatal exposure was evaluated, including parameters indirectly related to exposure and health adversities, such as sociodemographic and anthropometric parameters and dietary factors. The primary outcome of the study was that the identified perturbations related to the TCA cycle are mainly associated with impaired mitochondrial respiration, which is detrimental to cellular homeostasis and functionality; this is further potentiated by the capacity of heavy metals to induce oxidative stress. Insufficient production of energy from the mitochondria during the perinatal period is associated with developmental disorders in children. The HERACLES cohort included more detailed data regarding diet and sociodemographic status of the studied population, allowing the identification of a broader spectrum of effect modifiers, such as the beneficial role of a diet rich in antioxidants such as lycopene and ω-3 fatty acids, the negative effect the consumption of food items such as pork and chicken meat has or the multiple impacts of fish consumption. Beyond diet, several other factors have been proven influential for child neurodevelopment, such as the proximity to pollution sources (e.g., waste treatment site) and the broader living environment, including socioeconomic and demographic characteristics. Overall, our results demonstrate the utility of exposome-wide association studies (EWAS) toward understanding the relationships among the multiple factors that determine human exposure and the underlying biology, reflected as omics markers of effect on neurodevelopment during childhood.
Asunto(s)
Exposición a Riesgos Ambientales , Exposoma , Metales Pesados , Periodo Periparto , Niño , Femenino , Humanos , Embarazo , Exposición a Riesgos Ambientales/efectos adversos , Contaminación Ambiental , Grecia , Metales Pesados/toxicidad , Eslovenia , Factores de RiesgoRESUMEN
Using low-cost portable air quality (AQ) monitoring devices is a growing trend in personal exposure studies, enabling a higher spatio-temporal resolution and identifying acute exposure to high concentrations. Comprehension of the results by participants is not guaranteed in exposure studies. However, information on personal exposure is multiplex, which calls for participant involvement in information design to maximise communication output and comprehension. This study describes and proposes a model of a user-centred design (UCD) approach for preparing a final report for participants involved in a multi-sensor personal exposure monitoring study performed in seven cities within the EU Horizon 2020 ICARUS project. Using a combination of human-centred design (HCD), human-information interaction (HII) and design thinking approaches, we iteratively included participants in the framing and design of the final report. User needs were mapped using a survey (n = 82), and feedback on the draft report was obtained from a focus group (n = 5). User requirements were assessed and validated using a post-campaign survey (n = 31). The UCD research was conducted amongst participants in Ljubljana, Slovenia, and the results report was distributed among the participating cities across Europe. The feedback made it clear that the final report was well-received and helped participants better understand the influence of individual behaviours on personal exposure to air pollution.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Europa (Continente) , HumanosRESUMEN
Use of a multi-sensor approach can provide citizens with holistic insights into the air quality of their immediate surroundings and their personal exposure to urban stressors. Our work, as part of the ICARUS H2020 project, which included over 600 participants from seven European cities, discusses the data fusion and harmonization of a diverse set of multi-sensor data streams to provide a comprehensive and understandable report for participants. Harmonizing the data streams identified issues with the sensor devices and protocols, such as non-uniform timestamps, data gaps, difficult data retrieval from commercial devices, and coarse activity data logging. Our process of data fusion and harmonization allowed us to automate visualizations and reports, and consequently provide each participant with a detailed individualized report. Results showed that a key solution was to streamline the code and speed up the process, which necessitated certain compromises in visualizing the data. A thought-out process of data fusion and harmonization of a diverse set of multi-sensor data streams considerably improved the quality and quantity of distilled data that a research participant received. Though automation considerably accelerated the production of the reports, manual and structured double checks are strongly recommended.
Asunto(s)
Contaminación del Aire , Ciudades , Humanos , Almacenamiento y Recuperación de la InformaciónRESUMEN
In this study, the exposome paradigm has been applied on a mother-child cohort adopting an optimised untargeted metabolomics approach for human urine followed by advanced bioinformatics analysis. Exposome-wide association algorithms were used to draw links between in utero co-exposure to metals and phthalates, metabolic pathways deregulation, and clinically observed phenotypes of neurodevelopmental disorders such as problems in linguistic, motor development and cognitive capacity. Children (n = 148) were tested at the first and second year of their life using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Their mothers had been exposed to metals and phthalates during the pregnancy, according to human biomonitoring results from previously performed studies. Untargeted metabolomics analysis of biobanked urine samples from the mothers was performed using a combination of the high throughput analytical methods liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). Most perturbed metabolic pathways from co-exposure heavy metals and phthalates were pathways related to the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation, indicating the possibility of disruption of mitochondrial respiration. Overproduction of reactive oxygen species (ROS); the presence of glutathione peroxidase 3 (GPx3) during pregnancy and presence of glutathione peroxidase 1 (GPx1) in the umbilical cord were linked to verbal development problems. Another finding of the study is that in real life, adverse outcomes occur as a combination of environmental and social factors, all of them acting synergistically towards the deployment of an observed phenotype. Finally, the two-steps association process (exposure to pathways and pathways to adverse outcomes) was able to (a) provide associations that are not evident by directly associating exposure to outcomes and (b) provides additional insides on the mechanisms of environmental disease.
Asunto(s)
Exposoma , Metales Pesados , Trastornos del Neurodesarrollo , Efectos Tardíos de la Exposición Prenatal , Desarrollo Infantil , Estudios de Cohortes , Exposición a Riesgos Ambientales , Femenino , Humanos , Lactante , Metales Pesados/toxicidad , Madres , EmbarazoRESUMEN
BACKGROUND: Greenspace has been associated with health benefits in many contexts. An important pathway may be through outdoor physical activity. We use a novel approach to examine the link between greenspace microenvironments and outdoor physical activity levels in the HEALS study conducted in Edinburgh (UK), the Netherlands, and Athens and Thessaloniki (Greece). METHODS: Using physical activity tracker recordings, 118 HEALS participants with young children were classified with regard to daily minutes of moderate to vigorous physical activity (MVPA); 60 were classified with regard to the metabolic equivalent task (MET)-minutes for each of the 1014 active trips they made. Greenspace indicators were generated for Normalised Difference Vegetation Index (NDVI), tree cover density (TCD), and green land use (GLU). We employed linear mixed-effects models to analyse (1) daily MVPA in relation to greenspace within 300 m and 1000 m of residential addresses and (2) trip MET-minutes in relation to average greenspace within a 50 m buffer of walking/cycling routes. Models were adjusted for activity, walkability, bluespace, age, sex, car ownership, dog ownership, season, weekday/weekend day, and local meteorology. RESULTS: There was no clear association between MVPA-minutes and any residential greenspace measure. For example, in fully adjusted models, a 10 percentage point increase in NDVI within 300 m of home was associated with a daily increase of 1.14 (95% CI - 0.41 to 2.70) minutes of MVPA. However, we did find evidence to indicate greenspace markers were positively linked to intensity and duration of activity: in fully adjusted models, 10 percentage point increases in trip NDVI, TCD, and GLU were associated with increases of 10.4 (95% CI: 4.43 to 16.4), 10.6 (95% CI: 4.96 to 16.3), and 3.36 (95% CI: 0.00 to 6.72) MET-minutes, respectively. The magnitude of associations with greenspace tended to be greater for cycling. CONCLUSIONS: More strenuous or longer walking and cycling trips occurred in environments with more greenspace, but levels of residential greenspace did not have a clear link with outdoor MVPA. To build on our research, we suggest future work examine larger, more diverse populations and investigate the influence of greenspace for trip purpose and route preference.
Asunto(s)
Parques Recreativos , Características de la Residencia , Animales , Preescolar , Perros , Europa (Continente) , Grecia , Humanos , Países BajosRESUMEN
Carbon monoxide (CO) poisoning causes cardiotoxicity and so far, no definite antidote has been proposed to overcome CO-induced adverse outcomes. Hesperidin, a citrus flavonoid, has shown cardio-protective effects in cardiac ischemia/reperfusion models. This study investigated the protective effects of hesperidin against CO-induced cardiac injury. To induce CO poisoning, rats were exposed to CO at 3000 ppm for 60 min. On the exposure day and the four following days, hesperidin (at three different doses of 25, 50, and 100 mg/kg/day) was administered intraperitoneally. A group of animals received normal saline and served as the control group. The electrocardiogram (ECG) was recorded and evaluated with special focus on S-T segment changes (depression or elevation), T-wave alterations, AV block and ventricular and supraventricular arrhythmias. On day 6 (i.e., the day after the last injection day), the animals were sacrificed and the hearts were harvested and evaluated for necrosis using hematoxylin and eosin staining. In addition, Akt protein expression levels and BAX/BCL2 ratio were determined by western blotting. Our results showed that hesperidin decreased cardiac necrosis. In animals treated with hesperidin 100 mg/kg, Akt protein expression was increased, while the BAX/BCL2 ratio was significantly decreased. ECG changes were reversed in all groups 2 h following CO exposure, regardless of hesperidin administration. Overall, hesperidin decreased the deleterious cardiac effects of CO poisoning in rats.
Asunto(s)
Intoxicación por Monóxido de Carbono , Hesperidina , Venenos , Animales , Monóxido de Carbono , Intoxicación por Monóxido de Carbono/tratamiento farmacológico , Hesperidina/farmacología , Ratas , Ratas WistarRESUMEN
Technology innovations create possibilities to capture exposure-related data at a great depth and breadth. Considering, though, the substantial hurdles involved in collecting individual data for whole populations, this study introduces a first approach of simulating human movement and interaction behaviour, using Agent Based Modelling (ABM). A city scale ABM was developed for urban Thessaloniki, Greece that feeds into population-based exposure assessment without imposing prior bias, basing its estimations onto emerging properties of the behaviour of the computerised autonomous decision makers (agents) that compose the city-system. Population statistics, road and buildings networks data were transformed into human, road and building agents, respectively. Survey outputs with time-use patterns were associated with human agent rules, aiming to model representative to real-world behaviours. Moreover, time-geography of exposure data, derived from a local sensors campaign, was used to inform and enhance the model. As a prevalence of an agent-specific decision-making, virtual individuals of different sociodemographic backgrounds express different spatiotemporal behaviours and their trajectories are coupled with spatially resolved pollution levels. Personal exposure was evaluated by assigning PM concentrations to human agents based on coordinates, type of location and intensity of encountered activities. Study results indicated that PM2.5 inhalation adjusted exposure between housemates can differ by 56.5% whereas exposure between two neighbours can vary by as much as 87%, due to the prevalence of different behaviours. This study provides details of a new methodology that permits the cost-effective construction of refined time-activity diaries and daily exposure profiles, taking into account different microenvironments and sociodemographic characteristics. The proposed method leads to a refined exposure assessment model, addressing effectively vulnerable subgroups of population. It can be used for evaluating the probable impacts of different public health policies prior to implementation reducing, therefore, the time and expense required to identify efficient measures.