Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Physiol Rep ; 12(9): e16016, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697940

RESUMEN

Concurrent resistance and endurance exercise training (CET) has well-studied benefits; however, inherent hormonal and genetic differences alter adaptive responses to exercise between sexes. Extracellular vesicles (EVs) are factors that contribute to adaptive signaling. Our purpose was to test if EV characteristics differ between men and women following CET. 18 young healthy participants underwent 12-weeks of CET. Prior to and following CET, subjects performed an acute bout of heavy resistance exercise (AHRET) consisting of 6 × 10 back squats at 75% 1RM. At rest and following AHRET, EVs were isolated from plasma and characteristics and miRNA contents were analyzed. AHRET elevated EV abundance in trained men only (+51%) and AHRET-induced changes were observed for muscle-derived EVs and microvesicles. There were considerable sex-specific effects of CET on EV miRNAs, highlighted by larger variation following the 12-week program in men compared to women at rest. Pathway analysis based on differentially expressed EV miRNAs predicted that AHRET and 12 weeks of CET in men positively regulates hypertrophy and growth pathways more so than in women. This report highlights sex-based differences in the EV response to resistance and concurrent exercise training and suggests that EVs may be important adaptive signaling factors altered by exercise training.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Entrenamiento de Fuerza , Humanos , Femenino , Masculino , Vesículas Extracelulares/metabolismo , Entrenamiento de Fuerza/métodos , Adulto , MicroARNs/sangre , MicroARNs/metabolismo , Adulto Joven , Ejercicio Físico/fisiología , Caracteres Sexuales , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Entrenamiento Aeróbico/métodos , Factores Sexuales
2.
Physiol Rep ; 12(6): e15953, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38490811

RESUMEN

This study compared the structural and cellular skeletal muscle factors underpinning adaptations in maximal strength, power, aerobic capacity, and lean body mass to a 12-week concurrent resistance and interval training program in men and women. Recreationally active women and men completed three training sessions per week consisting of high-intensity, low-volume resistance training followed by interval training performed using a variety upper and lower body exercises representative of military occupational tasks. Pre- and post-training vastus lateralis muscle biopsies were analyzed for changes in muscle fiber type, cross-sectional area, capillarization, and mitochondrial biogenesis marker content. Changes in maximal strength, aerobic capacity, and lean body mass (LBM) were also assessed. Training elicited hypertrophy of type I (12.9%; p = 0.016) and type IIa (12.7%; p = 0.007) muscle fibers in men only. In both sexes, training decreased type IIx fiber expression (1.9%; p = 0.046) and increased total PGC-1α (29.7%, p < 0.001) and citrate synthase (11.0%; p < 0.014) content, but had no effect on COX IV content or muscle capillarization. In both sexes, training increased maximal strength and LBM but not aerobic capacity. The concurrent training program was effective at increasing strength and LBM but not at improving aerobic capacity or skeletal muscle adaptations underpinning aerobic performance.


Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Masculino , Humanos , Femenino , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Cuádriceps , Ejercicio Físico/fisiología , Terapia por Ejercicio , Fuerza Muscular
3.
Sci Rep ; 13(1): 18943, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919323

RESUMEN

Skeletal muscle fibers regulate surrounding endothelial cells (EC) via secretion of numerous angiogenic factors, including extracellular vesicles (SkM-EV). Muscle fibers are broadly classified as oxidative (OXI) or glycolytic (GLY) depending on their metabolic characteristics. OXI fibers secrete more pro-angiogenic factors and have greater capillary densities than GLY fibers. OXI muscle secretes more EV than GLY, however it is unknown whether muscle metabolic characteristics regulate EV contents and signaling potential. EVs were isolated from primarily oxidative or glycolytic muscle tissue from mice. MicroRNA (miR) contents were determined and endothelial cells were treated with OXI- and GLY-EV to investigate angiogenic signaling potential. There were considerable differences in miR contents between OXI- and GLY-EV and pathway analysis identified that OXI-EV miR were predicted to positively regulate multiple endothelial-specific pathways, compared to GLY-EV. OXI-EV improved in vitro angiogenesis, which may have been mediated through nitric oxide synthase (NOS) related pathways, as treatment of endothelial cells with a non-selective NOS inhibitor abolished the angiogenic benefits of OXI-EV. This is the first report to show widespread differences in miR contents between SkM-EV isolated from metabolically different muscle tissue and the first to demonstrate that oxidative muscle tissue secretes EV with greater angiogenic signaling potential than glycolytic muscle tissue.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Ratones , Células Endoteliales/metabolismo , Músculo Esquelético/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Estrés Oxidativo
4.
Eur J Appl Physiol ; 123(7): 1415-1432, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36715739

RESUMEN

Exercise-induced skeletal muscle angiogenesis is a well-known physiological adaptation that occurs in humans in response to exercise training and can lead to endurance performance benefits, as well as improvements in cardiovascular and skeletal tissue health. An increase in capillary density in skeletal muscle improves diffusive oxygen exchange and waste extraction, and thus greater fatigue resistance, which has application to athletes but also to the general population. Exercise-induced angiogenesis can significantly contribute to improvements in cardiovascular and metabolic health, such as the increase in muscle glucose uptake, important for the prevention of diabetes. Recently, our understanding of the mechanisms by which angiogenesis occurs with exercise has grown substantially. This review will detail the biochemical, cellular and biomechanical signals for exercise-induced skeletal muscle angiogenesis, including recent work on extracellular vesicles and circulating angiogenic cells. In addition, the influence of age, sex, exercise intensity/duration, as well as recent observations with the use of blood flow restricted exercise, will also be discussed in detail. This review will provide academics and practitioners with mechanistic and applied evidence for optimising training interventions to promote physical performance through manipulating capillarisation in skeletal muscle.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Capilares , Hemodinámica , Neovascularización Fisiológica
5.
Exp Physiol ; 107(8): 906-918, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35561231

RESUMEN

NEW FINDINGS: What is the central question of this study? Do obesity and acute resistance exercise alter the regulation of muscle intercellular communication pathways consistent with inadequate compensatory angiogenesis in response to muscle loading present in individuals with obesity? What is the main finding and its importance? Obesity is associated with differences in both pro- and anti-angiogenic signalling consistent with lower muscle capillarization. Acute resistance exercise increases the release of skeletal muscle small extracellular vesicles independent of body mass. These results identify new cellular factors associated with impaired angiogenesis in obesity and the positive effects of acute resistance exercise in lean and obese skeletal muscle. ABSTRACT: Obesity (OB) impairs cell-to-cell communication signalling. Small extracellular vesicles (EVs), which include exosomes, are released by skeletal muscle and participate in cell-to-cell communication, including the regulation of angiogenesis. Resistance exercise (REx) increases muscle fibre size and capillarization. Although obesity increases muscle fibre size, there is an inadequate increase in capillarization such that capillary density is reduced. It was hypothesized that REx-induced angiogenic signalling and EV biogenesis would be lower with obesity. Sedentary lean (LN) and OB subjects (n = 8 per group) performed three sets of single-leg knee-extension REx at 80% of maximum. Muscle biopsies were obtained at rest, 15 min and 3 h postexercise and analysed for angiogenic and EV biogenesis mRNA and protein. In OB subjects, muscle fibre size was ∼20% greater and capillary density with type II fibres ∼25% lower compared with LN subjects (P < 0.001). In response to REx, the increase in VEGF mRNA (pro-angiogenic) was similar (3-fold) between groups, while thrombospondin-1 (TSP-1) mRNA (anti-angiogenic) increased ∼2.5-fold in OB subjects only (P = 0.010). miR-130a (pro-angiogenic) was ∼1.4-fold (P = 0.011) and miR-503 (anti-angiogenic) ∼1.8-fold (P = 0.017) greater in OB compared with LN subjects at all time points. In both groups, acute REx decreased the EV surface protein Alix by ∼50%, consistent with the release of exosomes (P = 0.016). Acute REx appears to induce the release of skeletal muscle small EVs independent of body mass. However, with obesity there is predominantly impaired angiogenic signalling, consistent with inadequate angiogenesis in response to basal muscle hypertrophy.


Asunto(s)
Músculo Esquelético , Neovascularización Fisiológica , Obesidad , Entrenamiento de Fuerza , Humanos , MicroARNs/metabolismo , Músculo Esquelético/fisiología , Obesidad/metabolismo , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Exp Physiol ; 106(10): 2083-2095, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34333817

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the impact of stress-induced premature senescence on skeletal muscle myoblast-derived extracellular vesicles (EVs) and myoblast-endothelial cell crosstalk? What is the main finding and its importance? Hydrogen peroxide treatment of human myoblasts induced stress-induced premature senescence (SIPS) and increased the release of exosome-sized EVs (30-150 nm in size) five-fold compared to untreated controls. Treatment of SIPS myoblast-derived EVs on endothelial cells increased senescence markers and decreased proliferation. Gene expression analysis of SIPS myoblast-derived EVs revealed a four-fold increase in senescence factor transforming growth factor-ß. These results highlight potential mechanisms by which senescence imparts deleterious effects on the cellular microenvironment. ABSTRACT: Cellular senescence contributes to numerous diseases through the release of pro-inflammatory factors as part of the senescence-associated secretory phenotype (SASP). In skeletal muscle, resident muscle progenitor cells (satellite cells) express markers of senescence with advancing age and in response to various pathologies, which contributes to reduced regenerative capacities in vitro. Satellite cells regulate their microenvironment in part through the release of extracellular vesicles (EVs), but the effect of senescence on EV signaling is unknown. Primary human myoblasts were isolated following biopsies of the vastus lateralis from young healthy subjects. Hydrogen peroxide (H2 O2 ) treatment was used to achieve stress-induced premature senescence (SIPS) of myoblasts. EVs secreted by myoblasts with and without H2 O2 treatment were isolated, analysed and used to treat human umbilical vein endothelial cells (HUVECs) to assess senescence and angiogenic impact. H2 O2 treatment of primary human myoblasts in vitro increased markers of senescence (ß-galactosidase and p21Cip1 ), decreased proliferation and increased exosome-like EV (30-150 nm) release approximately five-fold. In HUVECs, EV treatment from H2 O2 -treated myoblasts increased markers of senescence (ß-galactosidase and transforming growth factor ß), decreased proliferation and impaired HUVEC tube formation. Analysis of H2 O2 -treated myoblast-derived EV mRNA revealed a nearly four-fold increase in transforming growth factor ß expression. Our novel results highlight the impact of SIPS on myoblast communication and identify a VasoMyo Crosstalk by which SIPS myoblast-derived EVs impair endothelial cell function in vitro.


Asunto(s)
Vesículas Extracelulares , Mioblastos Esqueléticos , Proliferación Celular , Senescencia Celular , Vesículas Extracelulares/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mioblastos Esqueléticos/metabolismo
7.
Med Sci Sports Exerc ; 53(11): 2425-2435, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34107509

RESUMEN

PURPOSE: To investigate the effects of a single session of either peristaltic pulse dynamic leg compressions (PPDC) or local heat therapy (HT) after prolonged intermittent shuttle running on skeletal muscle glycogen content, muscle function, and the expression of factors involved in skeletal muscle remodeling. METHODS: Twenty-six trained individuals were randomly allocated to either a PPDC (n = 13) or a HT (n = 13) group. After completing a 90-min session of intermittent shuttle running, participants consumed 0.3 g·kg-1 protein plus 1.0 g·kg-1 carbohydrate and received either PPDC or HT for 60 min in one randomly selected leg, while the opposite leg served as control. Muscle biopsies from both legs were obtained before and after exposure to the treatments. Muscle function and soreness were also evaluated before, immediately after, and 24 h after the exercise bout. RESULTS: The changes in glycogen content were similar (P > 0.05) between the thigh exposed to PPDC and the control thigh ~90 min (Control: 14.9 ± 34.3 vs PPDC: 29.6 ± 34 mmol·kg-1 wet wt) and ~210 min (Control: 45.8 ± 40.7 vs PPDC: 52 ± 25.3 mmol·kg-1 wet wt) after the treatment. There were also no differences in the change in glycogen content between thighs ~90 min (Control: 35.9 ± 26.1 vs HT: 38.7 ± 21.3 mmol·kg-1 wet wt) and ~210 min (Control: 61.4 ± 50.6 vs HT: 63.4 ± 17.5 mmol·kg-1 wet wt) after local HT. The changes in peak torque and fatigue resistance of the knee extensors, muscle soreness, and the mRNA expression and protein abundance of select factors were also similar (P > 0.05) in both thighs, irrespective of the treatment. CONCLUSIONS: A single 1-h session of either PPDC or local HT does not accelerate glycogen resynthesis and the recovery of muscle function after prolonged intermittent shuttle running.


Asunto(s)
Glucógeno/biosíntesis , Calor/uso terapéutico , Aparatos de Compresión Neumática Intermitente , Músculo Esquelético/metabolismo , Carrera/fisiología , Adolescente , Adulto , Femenino , Humanos , Rodilla/fisiología , Masculino , Fatiga Muscular , Proteínas Musculares/metabolismo , Fuerza Muscular , Mialgia/terapia , ARN Mensajero/metabolismo , Torque , Adulto Joven
9.
J Physiol ; 597(20): 5109-5124, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31471968

RESUMEN

KEY POINTS: Cellular communication occurs between endothelial cells and skeletal muscle satellite cells and is mitogenic for both cell types under normal conditions. Skeletal muscle atrophy and endothelial cell dysfunction occur in tandem in cardiovascular disease, type II diabetes and ageing. The present study investigated how induction of endothelial cell dysfunction via high glucose treatment impacts growth and differentiation of human skeletal muscle satellite cells in vitro. Secreted factors from high glucose treated endothelial cells impaired satellite cell expansion and differentiation via decreased proliferation and dysregulation of p38 mitogen-activated protein kinase in satellite cells committed to myogenesis. These findings highlight a novel potential role for endothelial cells in the development and pathology of skeletal muscle atrophy, which is common in patients with endothelial dysfunction related pathologies. ABSTRACT: Cross-talk between endothelial cells (ECs) and skeletal muscle satellite cells (MuSC) has been identified as an important regulator of cellular functions in both cell types. In healthy conditions, EC secreted factors promote MuSC growth and differentiation. Endothelial and satellite cell dysfunction occur in tandem in many disease states; however, no data exist examining the impact of dysfunctional EC signalling on satellite cells. Therefore, the present study aimed to evaluate the effect that factors secreted from high glucose (HG) treated ECs have on the growth and differentiation of human satellite cells (HMuSC) using a conditioned medium (CM) cell culture model. Satellite cells were isolated from human skeletal muscle and grown in CM from normal or HG treated human umbilical vein ECs (HUVECs). Satellite cells grown in CM from HG treated HUVECs reduced growth (25%), differentiation (25%) and myonuclear fusion (35%). These responses were associated with increased superoxide (50%) and inflammatory cytokines (25-50%) in HG treated HUVECs and HG-CM. Decreased expansion of HG-CM treated HMuSCs was driven by a decrease in proliferation. Impaired gene expression and protein content of myogenic differentiation factors were preceded by decreased phosphorylation of p38 mitogen-activated protein kinase in HMuSC treated with CM from HG treated HUVECs. The results obtained in the present study are the first to show that factors secreted from HG treated ECs cause impairments in human muscle satellite cell growth and differentiation in vitro, highlighting endothelial cell health and secretion as a potential target for treating vascular disease-associated skeletal muscle dysfunction.


Asunto(s)
Glucosa/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Adulto , Diferenciación Celular , Células Cultivadas , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Fibras Musculares Esqueléticas/fisiología , Células Satélite del Músculo Esquelético/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA