Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
ACS Nano ; 18(23): 15284-15302, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38814737

RESUMEN

Magnetic hyperthermia holds significant therapeutic potential, yet its clinical adoption faces challenges. One obstacle is the large-scale synthesis of high-quality superparamagnetic iron oxide nanoparticles (SPIONs) required for inducing hyperthermia. Robust and scalable manufacturing would ensure control over the key quality attributes of SPIONs, and facilitate clinical translation and regulatory approval. Therefore, we implemented a risk-based pharmaceutical quality by design (QbD) approach for SPION production using flame spray pyrolysis (FSP), a scalable technique with excellent batch-to-batch consistency. A design of experiments method enabled precise size control during manufacturing. Subsequent modeling linked the SPION size (6-30 nm) and composition to intrinsic loss power (ILP), a measure of hyperthermia performance. FSP successfully fine-tuned the SPION composition with dopants (Zn, Mn, Mg), at various concentrations. Hyperthermia performance showed a strong nonlinear relationship with SPION size and composition. Moreover, the ILP demonstrated a stronger correlation to coercivity and remanence than to the saturation magnetization of SPIONs. The optimal operating space identified the midsized (15-18 nm) Mn0.25Fe2.75O4 as the most promising nanoparticle for hyperthermia. The production of these nanoparticles on a pilot scale showed the feasibility of large-scale manufacturing, and cytotoxicity investigations in multiple cell lines confirmed their biocompatibility. In vitro hyperthermia studies with Caco-2 cells revealed that Mn0.25Fe2.75O4 nanoparticles induced 80% greater cell death than undoped SPIONs. The systematic QbD approach developed here incorporates process robustness, scalability, and predictability, thus, supporting the clinical translation of high-performance SPIONs for magnetic hyperthermia.


Asunto(s)
Hipertermia Inducida , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/química , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico
2.
ACS Chem Neurosci ; 12(10): 1811-1823, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33939923

RESUMEN

Detailed metabolic imaging of specific brain regions in early aging may expose pathophysiological mechanisms and indicate effective neuropharmacological targets in the onset of cognitive decline. Comprehensive imaging of brain aging and drug-target effects is restricted using conventional methodology. We simultaneously visualized multiple metabolic alterations induced by normal aging in specific regions of mouse brains by integrating Fourier-transform ion cyclotron resonance mass spectrometry imaging and combined supervised and unsupervised machine learning models. We examined the interplay between aging and the response to tacrine-induced acetylcholinesterase inhibition, a well-characterized therapeutic treatment against dementia. The dipeptide carnosine (ß-alanyl-l-histidine) and the vitamin α-tocopherol were significantly elevated by aging in different brain regions. l-Carnitine and acetylcholine metabolism were found to be major pathways affected by aging and tacrine administration in a brain region-specific manner, indicating altered mitochondrial function and neurotransmission. The highly interconnected hippocampus and retrosplenial cortex displayed different age-induced alterations in lipids and acylcarnitines, reflecting diverse region-specific metabolic effects. The subregional differences observed in the hippocampal formation of several lipid metabolites demonstrate the unique potential of the technique compared to standard mass spectrometry approaches. An age-induced increase of endogenous antioxidants, such as α-tocopherol, in the hippocampus was detected, suggesting an augmentation of neuroprotective mechanisms in early aging. Our comprehensive imaging approach visualized heterogeneous age-induced metabolic perturbations in mitochondrial function, neurotransmission, and lipid signaling, not always attenuated by acetylcholinesterase inhibition.


Asunto(s)
Preparaciones Farmacéuticas , Animales , Encéfalo/diagnóstico por imagen , Aprendizaje Automático , Espectrometría de Masas , Ratones , Tacrina
3.
J Pharm Sci ; 110(1): 388-396, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007277

RESUMEN

The Breast Cancer Resistance Protein (BCRP) is a key transporter in drug efflux and drug-drug interactions. However, endogenous expression of Multidrug Resistance Protein 1 (MDR1) confounds the interpretation of BCRP-mediated transport in in vitro models. Here we used a CRISPR-Cas9 edited Madin-Darby canine kidney (MDCK) II cell line (MDCKcMDR1-KO) for stable expression of human BCRP (hBCRP) with no endogenous canine MDR1 (cMDR1) expression (MDCK-hBCRPcMDR1-KO). Targeted quantitative proteomics verified expression of hBCRP, and global analysis of the entire proteome corroborated no or very low background expression of other drug transport proteins or metabolizing enzymes. This new cell line, had similar proteome like MDCKcMDR1-KO and a previously established, corresponding cell line overexpressing human MDR1 (hMDR1), MDCK-hMDR1cMDR1-KO. Functional studies with MDCK-hBCRPcMDR1-KO confirmed high hBCRP activity. The MDCK-hBCRPcMDR1-KO cell line together with the MDCK-hMDR1cMDR1-KO easily and accurately identified shared or specific substrates of the hBCRP and the hMDR1 transporters. These cell lines offer new, improved in vitro tools for the assessment of drug efflux and drug-drug interactions in drug development.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Sistemas CRISPR-Cas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Transporte Biológico , Línea Celular , Perros , Humanos , Células de Riñón Canino Madin Darby , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
4.
Pharmaceutics ; 12(4)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344570

RESUMEN

Acamprosate is an anionic drug substance widely used in treating symptoms of alcohol withdrawal. It was recently shown that oral acamprosate absorption is likely due to paracellular transport. In contrast, little is known about the eliminating mechanism clearing acamprosate from the blood in the kidneys, despite the fact that studies have shown renal secretion of acamprosate. The hypothesis of the present study was therefore that renal organic anion transporters (OATs) facilitate the renal excretion of acamprosate in humans. The aim of the present study was to establish and apply OAT1 (gene product of SLC22A6) and OAT3 (gene product of SLC22A8) expressing cell lines to investigate whether acamprosate is a substrate or inhibitor of OAT1 and/or OAT3. The studies were performed in HEK293-Flp-In cells stably transfected with SLC22A6 or SLC22A8. Protein and functional data showed that the established cell lines are useful for studying OAT1- and OAT3-mediated transport in bi-laboratory studies. Acamprosate inhibited OAT1-mediated p-aminohippuric acid (PAH) uptake but did not inhibit substrate uptake via OAT3 expressing cells, neither when applied concomitantly nor after a 3 h preincubation with acamprosate. The uptake of PAH via OAT1 was inhibited in a competitive manner by acamprosate and cellular uptake studies showed that acamprosate is a substrate for OAT1 with a Km-value of approximately 700 µM. Probenecid inhibited OAT1-mediated acamprosate uptake with a Ki-value of approximately 13 µM, which may translate into an estimated clinically significant DDI index. In conclusion, acamprosate was identified as a substrate of OAT1 but not OAT3.

5.
Mol Pharm ; 16(11): 4636-4650, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31560549

RESUMEN

In drug development, estimating fraction absorbed (Fa) in man for permeability-limited compounds is important but challenging. To model Fa of such compounds from apparent permeabilities (Papp) across filter-grown Caco-2 cell monolayers, it is central to elucidate the intestinal permeation mechanism(s) of the compound. The present study aims to refine a computational permeability model to investigate the relative contribution of paracellular and transcellular routes to the Papp across Caco-2 monolayers of the permeability-limited compound acamprosate having a bioavailability of ∼11%. The Papp values of acamprosate and of several paracellular marker molecules were measured. These Papp values were used to refine system-specific parameters of the Caco-2 monolayers, that is, paracellular pore radius, pore capacity, and potential drop. The refined parameters were subsequently used as an input in modeling the permeability (Pmodeled) of the tested compounds using mathematical models collected from two published permeability models. The experimental data show that acamprosate Papp across Caco-2 monolayers is low and similar in both transport directions. The obtained acamprosate Papp, 1.56 ± 0.28 × 10-7 cm·s-1, is similar to the Papp of molecular markers for paracellular permeability, namely, mannitol (2.72 ± 0.24 × 10-7 cm·s-1), lucifer yellow (1.80 ± 0.35 × 10-7 cm·s-1), and fluorescein (2.10 ± 0.28 × 10-7 cm·s-1), and lower than that of atenolol (7.32 ± 0.60 × 10-7 cm·s-1; mean ± SEM, n = 3-6), while the end-point amount of acamprosate internalized by the cell monolayer, Qmonolayer, was lower than that of mannitol. Acamprosate did not influence the barrier function of the monolayers since it altered neither the Papp of the three paracellular markers nor the transepithelial electrical resistance (TEER) of the cell monolayer. The Pmodeled for all the paracellular markers and acamprosate was dominated by the Ppara component and matched the experimentally obtained Papp. Furthermore, acamprosate did not inhibit the uptake of probe substrates for solute carriers PEPT1, TAUT, PAT1, EAAT1, B0,+AT/rBAT, OATP2B1, and ASBT expressed in Caco-2 cells. Thus, the Pmodeled estimated well Ppara, and the paracellular route appears to be the predominant mechanism for acamprosate Papp across Caco-2 monolayers, while the alternative transcellular routes, mediated by passive diffusion or carriers, are suggested to only play insignificant roles.


Asunto(s)
Acamprosato/metabolismo , Atenolol/metabolismo , Disponibilidad Biológica , Transporte Biológico/fisiología , Células CACO-2 , Línea Celular Tumoral , Difusión , Fluoresceína/metabolismo , Humanos , Isoquinolinas/metabolismo , Manitol/metabolismo , Permeabilidad
6.
Bioorg Med Chem Lett ; 28(14): 2446-2450, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29929882

RESUMEN

The dipeptide amide H-Phe-Phe-NH2 (1) that previously was identified as a ligand for the substance P 1-7 (SP1-7) binding site exerts intriguing results in animal models of neuropathic pain after central but not after peripheral administration. The dipeptide 1 is derived from stepwise modifications of the anti-nociceptive heptapeptide SP1-7 and the tetrapeptide endomorphin-2 that is also binding to the SP1-7 site. We herein report a strong anti-allodynic effect of a new H-Phe-Phe-NH2 peptidomimetic (4) comprising an imidazole ring as a bioisosteric element, in the spare nerve injury (SNI) mice model after peripheral administration. Peptidomimetic 4 was stable in plasma, displayed a fair membrane permeability and a favorable neurotoxic profile. Moreover, the effective dose (ED50) of 4 was superior as compared to gabapentin and morphine that are used in clinic.


Asunto(s)
Amidas/farmacología , Dipéptidos/farmacología , Hiperalgesia/tratamiento farmacológico , Imidazoles/farmacología , Peptidomiméticos/farmacología , Nervios Espinales/efectos de los fármacos , Nervios Espinales/lesiones , Amidas/sangre , Amidas/química , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Dipéptidos/sangre , Dipéptidos/química , Relación Dosis-Respuesta a Droga , Imidazoles/sangre , Imidazoles/química , Inyecciones Intraperitoneales , Ratones , Estructura Molecular , Peptidomiméticos/sangre , Peptidomiméticos/química , Ratas
7.
Neuroimage ; 172: 808-816, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29329980

RESUMEN

There is a high need to develop quantitative imaging methods capable of providing detailed brain localization information of several molecular species simultaneously. In addition, extensive information on the effect of the blood-brain barrier on the penetration, distribution and efficacy of neuroactive compounds is required. Thus, we have developed a mass spectrometry imaging method to visualize and quantify the brain distribution of drugs with varying blood-brain barrier permeability. With this approach, we were able to determine blood-brain barrier transport of different drugs and define the drug distribution in very small brain structures (e.g., choroid plexus) due to the high spatial resolution provided. Simultaneously, we investigated the effect of drug-drug interactions by inhibiting the membrane transporter multidrug resistance 1 protein. We propose that the described approach can serve as a valuable analytical tool during the development of neuroactive drugs, as it can provide physiologically relevant information often neglected by traditional imaging technologies.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Loperamida/farmacocinética , Propranolol/farmacocinética , Espectrometría de Masa por Ionización de Electrospray/métodos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Interacciones Farmacológicas , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Tisular
8.
J Pharm Sci ; 106(9): 2909-2913, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28450237

RESUMEN

Madin-Darby canine kidney (MDCK) II cells stably transfected with transport proteins are commonly used models for drug transport studies. However, endogenous expression of especially canine MDR1 (cMDR1) confounds the interpretation of such studies. Here we have established an MDCK cell line stably overexpressing the human MDR1 transporter (hMDR1; P-glycoprotein), and used CRISPR-Cas9 gene editing to knockout the endogenous cMDR1. Genomic screening revealed the generation of a clonal cell line homozygous for a 4-nucleotide deletion in the canine ABCB1 gene leading to a frameshift and a premature stop codon. Knockout of cMDR1 expression was verified by quantitative protein analysis and functional studies showing retained activity of the human MDR1 transporter. Application of this cell line allowed unbiased reclassification of drugs previously defined as both substrates and non-substrates in different studies using commonly used MDCK-MDR1 clones. Our new MDCK-hMDR1 cell line, together with a previously developed control cell line, both with identical deletions in the canine ABCB1 gene and lack of cMDR1 expression represent excellent in vitro tools for use in drug discovery.


Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico , Sistemas CRISPR-Cas , Perros , Descubrimiento de Drogas , Expresión Génica , Humanos , Células de Riñón Canino Madin Darby/metabolismo
9.
Sci Rep ; 7: 43047, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28225057

RESUMEN

Intracellular drug exposure is influenced by cell- and tissue-dependent expression of drug-transporting proteins and metabolizing enzymes. Here, we introduce the concept of intracellular bioavailability (Fic) as the fraction of extracellular drug available to bind intracellular targets, and we assess how Fic is affected by cellular drug disposition processes. We first investigated the impact of two essential drug transporters separately, one influx transporter (OATP1B1; SLCO1B1) and one efflux transporter (P-gp; ABCB1), in cells overexpressing these proteins. We showed that OATP1B1 increased Fic of its substrates, while P-gp decreased Fic. We then investigated the impact of the concerted action of multiple transporters and metabolizing enzymes in freshly-isolated human hepatocytes in culture configurations with different levels of expression and activity of these proteins. We observed that Fic was up to 35-fold lower in the configuration with high expression of drug-eliminating transporters and enzymes. We conclude that Fic provides a measurement of the net impact of all cellular drug disposition processes on intracellular bioavailable drug levels. Importantly, no prior knowledge of the involved drug distribution pathways is required, allowing for high-throughput determination of drug access to intracellular targets in highly defined cell systems (e.g., single-transporter transfectants) or in complex ones (including primary human cells).


Asunto(s)
Disponibilidad Biológica , Citoplasma/química , Hepatocitos/enzimología , Hepatocitos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Células Cultivadas , Humanos
10.
Oncotarget ; 7(24): 35703-35723, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27248168

RESUMEN

Sustained autophagy contributes to the metabolic adaptation of cancer cells to hypoxic and acidic microenvironments. Since cells in such environments are resistant to conventional cytotoxic drugs, inhibition of autophagy represents a promising therapeutic strategy in clinical oncology. We previously reported that the efficacy of hydroxychloroquine (HCQ), an autophagy inhibitor under clinical investigation is strongly impaired in acidic tumor environments, due to poor uptake of the drug, a phenomenon widely associated with drug resistance towards many weak bases. In this study we identified salinomycin (SAL) as a potent inhibitor of autophagy and cytotoxic agent effective on several cancer cell lines under conditions of transient and chronic acidosis. Since SAL has been reported to specifically target cancer-stem cells (CSC), we used an established model of breast CSC and CSC derived from breast cancer patients to examine whether this specificity may be associated with autophagy inhibition. We indeed found that CSC-like cells are more sensitive to autophagy inhibition compared to cells not expressing CSC markers. We also report that the ability of SAL to inhibit mammosphere formation from CSC-like cells was dramatically enhanced in acidic conditions. We propose that the development and use of clinically suitable SAL derivatives may result in improved autophagy inhibition in cancer cells and CSC in the acidic tumor microenvironment and lead to clinical benefits.


Asunto(s)
Acidosis/fisiopatología , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Piranos/farmacología , Antineoplásicos/uso terapéutico , Biopsia , Neoplasias de la Mama/patología , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Supervivencia Celular , Femenino , Humanos , Piranos/uso terapéutico , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/fisiología , Microambiente Tumoral/fisiología , Ensayo de Tumor de Célula Madre
11.
Drug Metab Dispos ; 44(4): 505-16, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26842596

RESUMEN

Isolated human hepatocytes are commonly used to predict transporter-mediated clearance in vivo. Such predictions, however, do not provide estimations of transporter contributions and consequently do not allow predictions of the outcome resulting from a change in the activity of a certain transporter, for example, by inhibition or a genetic variant with reduced function. Pitavastatin is a drug that is heavily dependent on hepatic transporters for its elimination, and it is excreted mainly as unchanged drug in the bile. For this reason, pitavastatin was used as a model drug to demonstrate the applicability of a bottom-up approach to predict transporter-mediated disposition in sandwich-cultured human hepatocytes (SCHHs), allowing for the estimation of transporter contributions. Transport experiments in transfected human embryonic kidney cells (HEK293 cell lines) and inverted membrane vesicles overexpressing each of the relevant transport proteins were used to generate parameter estimates for the mechanistic model. By adjusting for differences in transporter abundance between the in vitro systems and individual SCHH batches, the model successfully predicted time profiles of medium and intracellular accumulation. Our predictions of pitavastatin bile accumulation could not be confirmed, however, because of a very low biliary excretion of pitavastatin in relation to the hepatic uptake in our SCHHs. This study is, to our knowledge, the first to successfully simulate transporter-mediated processes in a complex system such as SCHHs at the level of individual transport proteins using a bottom-up approach.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hepatocitos/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteómica/métodos , Quinolinas/metabolismo , Anciano , Transporte Biológico/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad
12.
J Pharm Sci ; 105(2): 1017-1021, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26869442

RESUMEN

Madin-Darby canine kidney II cells transfected with one or several transport proteins are commonly used models to study drug transport. In these cells, however, endogenous transporters such as canine Mdr1/P-glycoprotein (Abcb1) complicate the interpretation of transport studies. The aim of this investigation was to establish a Madin-Darby canine kidney II cell line using CRISPR-Cas9 gene-editing technology to knock out endogenous canine Mdr1 (cMdr1) expression. CRISPR-Cas9-mediated Abcb1 homozygous disruption occurred at frequencies of around 20% and resulted in several genotypes. We selected 1 clonal cell line, cMdr1 KO Cl2, for further examination. Consistent with an on-target effect of CRISPR-Cas9 in specific regions of the endogenous canine Abcb1 gene, we obtained a cell clone with Abcb1 gene alterations and without any cMdr1 expression, as confirmed by genome sequencing and quantitative protein analysis. Functional studies of these cells, using digoxin and other prototypic MDR1 substrates, showed close to identical transport in the apical-to-basolateral and basolateral-to-apical directions, resulting in efflux ratios indistinguishable from unity.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes/métodos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/deficiencia , Animales , Secuencia de Bases , Perros , Células de Riñón Canino Madin Darby , Datos de Secuencia Molecular
13.
J Proteome Res ; 14(8): 3305-14, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26167961

RESUMEN

Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Anciano , Transporte Biológico , Células Cultivadas , Cromatografía Liquida , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Masculino , Persona de Mediana Edad , Quinolinas/farmacocinética , Transducción de Señal , Espectrometría de Masas en Tándem
14.
Drug Metab Dispos ; 42(7): 1210-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24799396

RESUMEN

Differences in the expression and function of the organic anion transporting polypeptide (OATP) transporters contribute to interindividual variability in atorvastatin clearance. However, the importance of the bile acid transporter sodium taurocholate cotransporting polypeptide (NTCP, SLC10A1) in atorvastatin uptake clearance (CLupt) is not yet clarified. To elucidate this issue, we investigated the relative contribution of NTCP, OATP1B1, OATP1B3, and OATP2B1 to atorvastatin CLupt in 12 human liver samples. The impact of inhibition on atorvastatin CLupt was also studied, using inhibitors of different isoform specificities. Expression levels of the four transport proteins were quantified by liquid chromatography tandem mass spectrometry. These data, together with atorvastatin in vitro kinetics, were used to predict the maximal transport activity (MTA) and interindividual differences in CLupt of each transporter in vivo. Subsequently, hepatic uptake impairment on coadministration of five clinically interacting drugs was predicted using in vitro inhibitory potencies. NTCP and OATP protein expression varied 3.7- to 32-fold among the 12 sample donors. The rank order in expression was OATP1B1 > OATP1B3 ≈ NTCP ≈ OATP2B1. NTCP was found to be of minor importance in atorvastatin disposition. Instead, OATP1B1 and OATP1B3 were confirmed as the major atorvastatin uptake transporters. The average contribution to atorvastatin uptake was OATP1B1 > OATP1B3 >> OATP2B1 > NTCP, although this rank order varied among individuals. The interindividual differences in transporter expression and CLupt resulted in marked differences in drug-drug interactions due to isoform-specific inhibition. We conclude that this variation should be considered in in vitro to in vivo extrapolations.


Asunto(s)
Ácidos Heptanoicos/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Hígado/metabolismo , Pirroles/metabolismo , Atorvastatina , Secuencia de Bases , Línea Celular , Cromatografía Liquida , Cartilla de ADN , Interacciones Farmacológicas , Ácidos Heptanoicos/farmacología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Pirroles/farmacología , Espectrometría de Masas en Tándem
15.
Mol Pharm ; 10(11): 4252-62, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24079718

RESUMEN

Two clinical trials and a large set of in vitro transporter experiments were performed to investigate if the hepatobiliary disposition of the direct thrombin inhibitor prodrug AZD0837 is the mechanism for the drug-drug interaction with ketoconazole observed in a previous clinical study. In Study 1, [(3)H]AZD0837 was administered to healthy male volunteers (n = 8) to quantify and identify the metabolites excreted in bile. Bile was sampled directly from the jejunum by duodenal aspiration via an oro-enteric tube. In Study 2, the effect of ketoconazole on the plasma and bile pharmacokinetics of AZD0837, the intermediate metabolite (AR-H069927), and the active form (AR-H067637) was investigated (n = 17). Co-administration with ketoconazole elevated the plasma exposure to AZD0837 and the active form approximately 2-fold compared to placebo, which may be explained by inhibited CYP3A4 metabolism and reduced biliary clearance, respectively. High concentrations of the active form was measured in bile with a bile-to-plasma AUC ratio of approximately 75, indicating involvement of transporter-mediated excretion of the compound. AZD0837 and its metabolites were further investigated as substrates of hepatic uptake and efflux transporters in vitro. Studies in MDCK-MDR1 cell monolayers and P-glycoprotein (P-gp) expressing membrane vesicles identified AZD0837, the intermediate, and the active form as substrates of P-gp. The active form was also identified as a substrate of the multidrug and toxin extrusion 1 (MATE1) transporter and the organic cation transporter 1 (OCT1), in HEK cells transfected with the respective transporter. Ketoconazole was shown to inhibit all of these three transporters; in particular, inhibition of P-gp and MATE1 occurred in a clinically relevant concentration range. In conclusion, the hepatobiliary transport pathways of AZD0837 and its metabolites were identified in vitro and in vivo. Inhibition of the canalicular transporters P-gp and MATE1 may lead to enhanced plasma exposure to the active form, which could, at least in part, explain the clinical interaction with ketoconazole.


Asunto(s)
Cetoconazol/metabolismo , Hígado/metabolismo , Adulto , Amidinas/metabolismo , Azetidinas/metabolismo , Bilis/metabolismo , Interacciones Farmacológicas , Humanos , Masculino , Adulto Joven
16.
Mol Pharm ; 10(8): 3152-63, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23822632

RESUMEN

The absorption, distribution, metabolism, and excretion (ADME) of drugs in vivo are to a large extent dependent on different transport and metabolism routes. Elucidation of this complex transport-metabolism interplay is a major challenge in drug development and at present no in vitro models suitable for this purpose are at hand. The aim of this study was to develop flexible, well-controlled, easy-to-use, integrated cell models, where drug transport and drug metabolism processes could be studied simultaneously. HEK293 cells stably transfected with the organic anion transporting polypeptide 1B1 (OATP1B1) were subjected to either transient transfection or adenoviral infection to introduce the genes expressing cytochrome P450 3A4 (CYP3A4), NADPH cytochrome P450 oxidoreductase (POR), cytochrome b5 (CYB5A), and multidrug resistance protein 1 (MDR1), in different combinations. Thereafter, the time and concentration-dependent transport and metabolism of two well-characterized statins, atorvastatin (acid and lactone forms) and simvastatin (acid form), were determined in the different models. The results show that CYP3A4-dependent metabolism of the more hydrophilic atorvastatin acid was dependent on OATP1B1 uptake and influenced by MDR1 efflux. In contrast, the metabolism of the more lipophilic atorvastatin lactone was not affected by active transport, whereas the metabolism of simvastatin acid was less influenced by active transport than atorvastatin acid. Our results, together with the models being applicative for any combination of drug transporters and CYP metabolizing enzymes of choice, provide proof-of-concept for the potential of the new integrated cell models presented as valuable screening tools in drug discovery and development.


Asunto(s)
Transporte Biológico/fisiología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenoviridae , Línea Celular , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromos b5/genética , Citocromos b5/metabolismo , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Simvastatina/análogos & derivados , Simvastatina/metabolismo
17.
J Med Chem ; 55(10): 4740-63, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22541068

RESUMEN

The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug-drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors.


Asunto(s)
Interacciones Farmacológicas , Hígado/metabolismo , Modelos Moleculares , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Transportadores de Anión Orgánico/antagonistas & inhibidores , Atorvastatina , Transporte Biológico/efectos de los fármacos , Estradiol/análogos & derivados , Estradiol/farmacocinética , Estrona/análogos & derivados , Estrona/farmacocinética , Células HEK293 , Ácidos Heptanoicos/farmacocinética , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Técnicas In Vitro , Análisis de los Mínimos Cuadrados , Transportador 1 de Anión Orgánico Específico del Hígado , Análisis Multivariante , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Pirroles/farmacocinética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Relación Estructura-Actividad , Transfección
18.
Pharm Res ; 29(2): 411-26, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21861202

RESUMEN

PURPOSE: To establish in vitro and in silico models that predict clinical drug-drug interactions (DDIs) with the OATP1B1 (SLCO1B1) transporter. METHODS: The inhibitory effect of 146 drugs and drug-like compounds on OATP1B1-mediated transport was studied in HEK293 cells. A computational model was developed to predict OATP1B1 inhibition. Concentration-dependent effects were investigated for six compounds; clinical DDIs were predicted by calculating change in exposure (i.e. R-values) in eight different ways. RESULTS: Sixty-five compounds were identified as OATP1B1 inhibitors at 20 µM. The computational model predicted the test set with 80% accuracy for inhibitors and 91% for non-inhibitors. In vitro-in vivo comparisons underscored the importance of using drugs with known clinical effects as references. Thus, reference drugs, cyclosporin A, gemfibrozil, and fenofibrate, provided an inhibition interval to which three antiviral drugs, atazanavir, lopinavir, and amprenavir, could be compared and their clinical DDIs with OATP1B1 classified. CONCLUSIONS: Twenty-two new OATP1B1 inhibitors were identified, a predictive OATP1B1 inhibition in silico model was developed, and successful predictions of clinical DDIs were obtained with OATP1B1.


Asunto(s)
Interacciones Farmacológicas , Transportadores de Anión Orgánico/antagonistas & inhibidores , Atorvastatina , Simulación por Computador , Estradiol/análogos & derivados , Estradiol/farmacología , Expresión Génica , Células HEK293 , Ácidos Heptanoicos/farmacología , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado , Modelos Biológicos , Transportadores de Anión Orgánico/metabolismo , Pirroles/farmacología
19.
Hum Genet ; 127(1): 1-17, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19823875

RESUMEN

The cytochromes P450 (CYPs) are very efficient catalysts of foreign compound metabolism and are responsible for the major part of metabolism of clinically important drugs. The enzymes are important in cancer since they (a) activate dietary and environmental components to ultimate carcinogens, (b) activate or inactivate drugs used for cancer treatment, and (c) are potential targets for anticancer therapy. The genes encoding the CYP enzymes active in drug metabolism are highly polymorphic, whereas those encoding metabolism of precarcinogens are relatively conserved. A vast amount of literature is present where investigators have tried to link genetic polymorphism in CYPs to cancer susceptibility, although not much conclusive data have hitherto been obtained, with exception of CYP2A6 polymorphism and tobacco induced cancer, to a great extent because of lack of important functional polymorphisms in the genes studied. With respect to anticancer treatment, the genetic CYP polymorphism is of greater importance, where treatment with tamoxifen, but also with cyclophosphamide and maybe thalidomide is influenced by CYP genetic variants. In the present review we present updates on CYP genetics, cancer risk and treatment and also epigenetic aspects of interindividual variability in CYP expression and the use of these enzymes as targets for cancer therapy. We conclude that the CYP polymorphism does not predict cancer susceptibility to any large extent but that this polymorphism might be an important factor for optimal cancer therapy using selected anticancer agents.


Asunto(s)
Antineoplásicos/uso terapéutico , Sistema Enzimático del Citocromo P-450/genética , Epigénesis Genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Animales , Antineoplásicos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Familia de Multigenes , Polimorfismo Genético , Factores de Riesgo
20.
Eur J Cancer ; 45(4): 705-12, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19118998

RESUMEN

AIM: Cytochrome P450 (CYP) enzymes are important for drug metabolism. A novel cytochrome P450 enzyme, CYP2W1, has recently been identified. This enzyme is mainly found in foetal colon tissue and in tumour tissue. In this pilot study, we have investigated the expression of CYP2W1 in 162 tumours from patients with stages II and III colorectal cancer. METHODS: The expression of CYP2W1 enzyme was immunohistochemically detected using a polyclonal antibody. Staining intensity was defined using a visual grading scale from 0 to 3. Grades 0-2 were classified as low, and grade 3 was classified as high expression of CYP2W1. RESULTS: About 64% of the tumours expressed a low level of CYP2W1-expression, and 36% expressed a high level. CYP2W1-expression was an independent prognostic factor for overall survival (p=0.007), where a high expression was associated with a worse clinical outcome. CONCLUSIONS: Immunohistochemically assessed expression of CYP2W1 is an independent prognostic factor in patients with stages II and III colorectal cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Adulto , Anciano , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/cirugía , Familia 2 del Citocromo P450 , Femenino , Humanos , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Estadificación de Neoplasias , Proyectos Piloto , Pronóstico , Análisis de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA