Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39211148

RESUMEN

Major developmental events occurring in the hippocampus during the third trimester of human gestation and neonatally in altricial rodents include rapid and synchronized dendritic arborization and astrocyte proliferation and maturation. We tested the hypothesis that signals sent by developing astrocytes to developing neurons modulate dendritic development in vivo. We altered neuronal development by neonatal (third trimester-equivalent) ethanol exposure in mice; this treatment increased dendritic arborization in hippocampal pyramidal neurons. We next assessed concurrent changes in the mouse astrocyte translatome by translating ribosomal affinity purification (TRAP)-seq. We followed up on ethanol-inhibition of astrocyte Chpf2 and Chsy1 gene translation because these genes encode for biosynthetic enzymes of chondroitin sulfate glycosaminoglycan (CS-GAG) chains (extracellular matrix components that inhibit neuronal development and plasticity) and have not been explored before for their roles in dendritic arborization. We report that Chpf2 and Chsy1 are enriched in astrocytes and their translation is inhibited by ethanol, which also reduces the levels of CS-GAGs measured by Liquid Chromatography/Mass Spectrometry. Finally, astrocyte-conditioned medium derived from Chfp2-silenced astrocytes increased neurite branching of hippocampal neurons in vitro. These results demonstrate that CS-GAG biosynthetic enzymes in astrocytes regulates dendritic arborization in developing neurons.

2.
Sci Rep ; 14(1): 5808, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461359

RESUMEN

Prenatal cannabis use is associated with adverse offspring neurodevelopmental outcomes, however the underlying mechanisms are relatively unknown. We sought to determine the impact of chronic delta-9-tetrahydrocannabinol (THC) exposure on fetal neurodevelopment in a rhesus macaque model using advanced imaging combined with molecular and tissue studies. Animals were divided into two groups, control (n = 5) and THC-exposed (n = 5), which received a daily THC edible pre-conception and throughout pregnancy. Fetal T2-weighted MRI was performed at gestational days 85 (G85), G110, G135 and G155 to assess volumetric brain development. At G155, animals underwent cesarean delivery with collection of fetal cerebrospinal fluid (CSF) for microRNA (miRNA) studies and fetal tissue for histologic analysis. THC exposure was associated with significant age by sex interactions in brain growth, and differences in fetal brain histology suggestive of brain dysregulation. Two extracellular vesicle associated-miRNAs were identified in THC-exposed fetal CSF; pathway analysis suggests that these miRNAs are associated with dysregulated axonal guidance and netrin signaling. This data is indicative of subtle molecular changes consistent with the observed histological data, suggesting a potential role for fetal miRNA regulation by THC. Further studies are needed to determine whether these adverse findings correlate with long-term offspring neurodevelopmental health.


Asunto(s)
Cannabis , MicroARNs , Embarazo , Animales , Femenino , Macaca mulatta , Dronabinol/efectos adversos , Feto , Cannabis/efectos adversos , MicroARNs/genética
3.
Neuropharmacology ; 170: 108066, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32240669

RESUMEN

A generally accepted framework derived predominately from animal models asserts that repeated cycles of chronic intermittent ethanol (EtOH; CIE) exposure cause progressive brain adaptations associated with anxiety and stress that promote voluntary drinking, alcohol dependence, and further brain changes that contribute to the pathogenesis of alcoholism. The current study used CIE exposure via vapor chambers to test the hypothesis that repeated episodes of withdrawals from chronic EtOH would be associated with accrual of brain damage as quantified using in vivo magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and MR spectroscopy (MRS). The initial study group included 16 male (~325g) and 16 female (~215g) wild-type Wistar rats exposed to 3 cycles of 1-month in vapor chambers + 1 week of abstinence. Half of each group (n = 8) was given vaporized EtOH to blood alcohol levels approaching 250 mg/dL. Blood and behavior markers were also quantified. There was no evidence for dependence (i.e., increased voluntary EtOH consumption), increased anxiety, or an accumulation of pathology. Neuroimaging brain responses to exposure included increased cerebrospinal fluid (CSF) and decreased gray matter volumes, increased Choline/Creatine, and reduced fimbria-fornix fractional anisotropy (FA) with recovery seen after one or more cycles and effects in female more prominent than in male rats. These results show transient brain integrity changes in response to CIE sufficient to induce acute withdrawal but without evidence for cumulative or escalating damage. Together, the current study suggests that nutrition, age, and sex should be considered when modeling human alcoholism.


Asunto(s)
Química Encefálica/efectos de los fármacos , Imagen de Difusión Tensora/métodos , Etanol/administración & dosificación , Exposición por Inhalación , Espectroscopía de Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/patología , Animales , Química Encefálica/fisiología , Etanol/toxicidad , Femenino , Exposición por Inhalación/efectos adversos , Masculino , Imagen Multimodal/métodos , Tamaño de los Órganos/efectos de los fármacos , Tamaño de los Órganos/fisiología , Ratas , Ratas Wistar , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/metabolismo
4.
Neuropsychology ; 33(2): 157-168, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30475047

RESUMEN

OBJECTIVE: Individuals with HIV treated with antiretroviral therapy can expect to reach average life span, making them susceptible to combined disease and aging effects on cognitive and motor functions. Slowed processing speed in HIV is a concern for cognitive and everyday functioning and is sensitive to declines in aging. We hypothesized that information processing (IP) deficits, over and above that expected with normal aging, would occur in older HIV patients similar to those observed in Parkinson's disease (PD) patients, with both conditions affecting frontostriatal pathways. METHOD: Groups comprised 26 individuals with HIV infection, 29 with mild-to-moderate PD, and 21 healthy controls (C). Speed of IP was assessed with the oral version of the Symbol Digit Modalities Test and the color naming condition of the Golden Stroop Task. RESULTS: The HIV group was impaired on speed of IP tasks compared with both the C and PD groups. Even after controlling for normal aging effects, older age in the HIV group correlated with IP slowing. Slower IP speed was associated with poorer general cognitive ability and more extrapyramidal motor signs in older HIV-infected individuals. CONCLUSIONS: The notable effects of impaired IP speed, over and above neurotypical age-related declines, indicate that older HIV-infected individuals may have an enhanced vulnerability for developing nonmotor and motor symptoms despite antiretroviral therapy. Assessing for oral IP speed may provide the unique opportunity to identify early signs of progressive clinical declines in HIV. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Asunto(s)
Cognición/fisiología , Infecciones por VIH/psicología , Enfermedad de Parkinson/psicología , Tiempo de Reacción/fisiología , Anciano , Envejecimiento/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA