Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2218229120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155905

RESUMEN

Castration-resistant prostate cancer (CRPC) poses a major clinical challenge with the androgen receptor (AR) remaining to be a critical oncogenic player. Several lines of evidence indicate that AR induces a distinct transcriptional program after androgen deprivation in CRPCs. However, the mechanism triggering AR binding to a distinct set of genomic loci in CRPC and how it promotes CRPC development remain unclear. We demonstrate here that atypical ubiquitination of AR mediated by an E3 ubiquitin ligase TRAF4 plays an important role in this process. TRAF4 is highly expressed in CRPCs and promotes CRPC development. It mediates K27-linked ubiquitination at the C-terminal tail of AR and increases its association with the pioneer factor FOXA1. Consequently, AR binds to a distinct set of genomic loci enriched with FOXA1- and HOXB13-binding motifs to drive different transcriptional programs including an olfactory transduction pathway. Through the surprising upregulation of olfactory receptor gene transcription, TRAF4 increases intracellular cAMP levels and boosts E2F transcription factor activity to promote cell proliferation under androgen deprivation conditions. Altogether, these findings reveal a posttranslational mechanism driving AR-regulated transcriptional reprogramming to provide survival advantages for prostate cancer cells under castration conditions.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Andrógenos , Antagonistas de Andrógenos , Factor 4 Asociado a Receptor de TNF/metabolismo , Línea Celular Tumoral , Ubiquitinación , Regulación Neoplásica de la Expresión Génica
2.
Mol Ther Nucleic Acids ; 28: 154-167, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35402069

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by mutations in the dystrophin gene. CRISPR/Cas9 genome editing has been used to correct DMD mutations in animal models at young ages. However, the longevity and durability of CRISPR/Cas9 editing remained to be determined. To address these issues, we subjected ΔEx44 DMD mice to systemic delivery of AAV9-expressing CRISPR/Cas9 gene editing components to reframe exon 45 of the dystrophin gene, allowing robust dystrophin expression and maintenance of muscle structure and function. We found that genome correction by CRISPR/Cas9 confers lifelong expression of dystrophin in mice and that corrected skeletal muscle is highly durable and resistant to myofiber necrosis and fibrosis, even in response to chronic injury. In contrast, when muscle fibers were ablated by barium chloride injection, we observed a loss of gene edited dystrophin expression. Analysis of on- and off-target editing in aged mice confirmed the stability of gene correction and the lack of significant off-target editing at 18 months of age. These findings demonstrate the long-term durability of CRISPR/Cas9 genome editing as a therapy for maintaining the integrity and function of DMD muscle, even under conditions of stress.

3.
Dev Cell ; 51(1): 89-98.e4, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31474563

RESUMEN

We previously identified a unique population of interstitial muscle progenitors, marked by expression of the Twist2 transcription factor, which fuses specifically to type IIb/x fast-twitch myofibers. Tw2+ progenitors are distinct from satellite cells, a muscle progenitor that expresses Pax7 and contributes to all myofiber types. Through RNA sequencing and immunofluorescence, we identify the membrane receptor, Nrp1, as a marker of Tw2+ cells but not Pax7+ cells. We also found that Sema3a, a chemorepellent ligand for Nrp1, is expressed by type I and IIa myofibers but not IIb myofibers. Using stripe migration assays, chimeric cell-cell fusion assays, and a Sema3a transgenic mouse model, we identify Sema3a-Nrp1 signaling as a major mechanism for Tw2+ cell fiber-type specificity. Our findings reveal an extracellular signaling mechanism whereby a cell-surface receptor for a chemorepellent confers specificity of intercellular fusion of a specific muscle progenitor with its target tissue.


Asunto(s)
Neuropilina-1/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal , Animales , Células COS , Diferenciación Celular , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Chlorocebus aethiops , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Ligandos , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Factor de Transcripción PAX7/metabolismo , Análisis de Secuencia de ARN , Células Madre/metabolismo
4.
J Clin Invest ; 128(7): 3129-3143, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29715200

RESUMEN

Receptor tyrosine kinases (RTKs) are important drivers of cancers. In addition to genomic alterations, aberrant activation of WT RTKs plays an important role in driving cancer progression. However, the mechanisms underlying how RTKs drive prostate cancer remain incompletely characterized. Here we show that non-proteolytic ubiquitination of RTK regulates its kinase activity and contributes to RTK-mediated prostate cancer metastasis. TRAF4, an E3 ubiquitin ligase, is highly expressed in metastatic prostate cancer. We demonstrated here that it is a key player in regulating RTK-mediated prostate cancer metastasis. We further identified TrkA, a neurotrophin RTK, as a TRAF4-targeted ubiquitination substrate that promotes cancer cell invasion and found that inhibition of TrkA activity abolished TRAF4-dependent cell invasion. TRAF4 promoted K27- and K29-linked ubiquitination at the TrkA kinase domain and increased its kinase activity. Mutation of TRAF4-targeted ubiquitination sites abolished TrkA tyrosine autophosphorylation and its interaction with downstream proteins. TRAF4 knockdown also suppressed nerve growth factor (NGF) stimulated TrkA downstream p38 MAPK activation and invasion-associated gene expression. Furthermore, elevated TRAF4 levels significantly correlated with increased NGF-stimulated invasion-associated gene expression in prostate cancer patients, indicating that this signaling axis is significantly activated during oncogenesis. Our results revealed a posttranslational modification mechanism contributing to aberrant non-mutated RTK activation in cancer cells.


Asunto(s)
Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptor trkA/metabolismo , Factor 4 Asociado a Receptor de TNF/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Trasplante de Neoplasias , Células PC-3 , Neoplasias de la Próstata/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Receptor trkA/química , Receptor trkA/genética , Factor 4 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 4 Asociado a Receptor de TNF/genética , Ubiquitinación , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA