Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2400252, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845080

RESUMEN

Small carbon materials, such as graphene, offer excellent mechanical strength. Micro/nano carbon materials are often dispersed into a metal matrix to form bulk composites with mechanical enhancement. Despite technical progress, such composites intrinsically suffer from a trade-off condition between strength and ductility because the load transfer path forms between mechanically strong yet chemically inert micro/nano carbon materials or between the carbon-metal interfaces. In other words, conventional carbon and metal composites become stronger with increasing carbon contents, but the weak interfaces also increase, leading to premature failure. In this regard, crucial advances are presented toward breaking the strength-ductility trade-off condition by utilizing Axially bi-Continuous Graphene-Nickel (ACGN) wires. This innovative ACGN achieves excellent combined strength and ductility-the highest among the current Ni-, Al-, and Cu-based carbon-enhanced metal matrix composites. For example, the ultimate strength and failure strain of 25-µm-diameter ACGN wires are improved by 71.76% and 58.24%, compared to their counterparts. The experimental and theoretical analyses indicate that the graphene-nickel interplay via their axially bi-continuous structure is the main underlying mechanism for the superb mechanical behavior. In specific, the continuous graphene, in addition to effective load-sharing, passivates the free surface of fine wire, forming dislocation pileups along the graphene-nickel interface and, therefore, hindering localized necking.

2.
Adv Mater ; 33(51): e2104208, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34677890

RESUMEN

The demand for high-power electrical transmission continues to increase with technical advances in electric vehicles, unmanned drones, portable devices, and deployable military applications. In this study, significantly enhanced electrical properties (i.e., a 450% increase in the current density breakdown limit) are demonstrated by synthesizing axially continuous graphene layers on microscale-diameter wires. To elucidate the underlying mechanisms of the observed enhancements, the electrical properties of pure copper wires and axially continuous graphene-copper (ACGC) wires with three different diameters are characterized while controlling the experimental conditions, including ambient temperature, gases, and pressure. The study reveals that the main mechanism that allows the application of extremely large current densities (>400 000 A cm-2 ) through the ACGC wires is threefold: the continuous graphene layers considerably improve: 1) surface heat dissipation (224% higher), 2) electrical conductivity (41% higher), and 3) thermal stability (41.2% lower resistivity after thermal cycles up to 450 °C), compared with pure copper wires. In addition, it is observed, through the use of high-speed camera images, that the ACGC wires exhibit very different failure behavior near the current density limit, compared with the pure copper wires.

3.
ACS Nano ; 14(4): 4374-4382, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32207604

RESUMEN

State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich N-doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous N-doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 C for 10 000 cycles). Paired with LiFePO4 cathodes, more than 100 stable cycles can be readily realized in full batteries.

4.
ACS Nano ; 14(1): 899-906, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31825587

RESUMEN

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) are prospective materials for quantum devices owing to their inherent 2D confinements. They also provide a platform to realize even lower-dimensional in-plane electron confinement, for example, 0D quantum dots, for exotic physical properties. However, fabrication of such laterally confined monolayer (1L) nanostructure in 1L crystals remains challenging. Here we report the realization of 1L ReS2 quantum dots epitaxially inlaid in 1L MoS2 by a two-step chemical vapor deposition method combining with plasma treatment. The lateral lattice mismatch between ReS2 and MoS2 leads to size-dependent crystal structure evolution and in-plane straining of the 1L ReS2 quantum dots. Optical spectroscopies reveal the abnormal charge transfer between the 1L ReS2 quantum dots and the MoS2 matrix, resulting from electron trapping in the 1L ReS2 quantum dots. This study may shed light on the development of in-plane quantum-confined devices in 2D materials for potential applications in quantum information.

5.
Sci Adv ; 5(2): eaat6951, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30793025

RESUMEN

While the compressive strength-density scaling relationship of ultralight cellular graphene materials has been extensively investigated, high tensile strength and ductility have not been realized in the theoretically strongest carbon materials because of high flaw sensitivity under tension and weak van der Waals interplanar bonding between graphene sheets. In this study, we report that large-scale ultralight nanoporous graphene with three-dimensional bicontinuous nanoarchitecture shows orders of magnitude higher strength and elastic modulus than all reported ultralight carbon materials under both compression and tension. The high-strength nanoporous graphene also exhibits excellent tensile ductility and work hardening, which are comparable to well-designed metamaterials but until now had not been realized in ultralight cellular materials. The excellent mechanical properties of the nanoporous graphene benefit from seamless graphene sheets in the bicontinuous nanoporosity that effectively preserves the intrinsic strength of atomically thick graphene in the three-dimensional cellular nanoarchitecture.

6.
Nat Commun ; 10(1): 275, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655526

RESUMEN

The real capacity of graphene and the lithium-storage process in graphite are two currently perplexing problems in the field of lithium ion batteries. Here we demonstrate a three-dimensional bilayer graphene foam with few defects and a predominant Bernal stacking configuration, and systematically investigate its lithium-storage capacity, process, kinetics, and resistances. We clarify that lithium atoms can be stored only in the graphene interlayer and propose the first ever planar lithium-intercalation model for graphenic carbons. Corroborated by theoretical calculations, various physiochemical characterizations of the staged lithium bilayer graphene products further reveal the regular lithium-intercalation phenomena and thus fully illustrate this elementary lithium storage pattern of two-dimension. These findings not only make the commercial graphite the first electrode with clear lithium-storage process, but also guide the development of graphene materials in lithium ion batteries.

7.
Adv Mater ; 31(2): e1805334, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30397927

RESUMEN

The key bottlenecks hindering the practical implementations of lithium-metal anodes in high-energy-density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high-surface-area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen-doped graphene as the sought-after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite-free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long-term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high-energy-density rechargeable lithium batteries.

8.
Nano Lett ; 18(10): 6157-6163, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30207733

RESUMEN

Interface segregation is a powerful approach to tailor properties of bulk materials by interface engineering. Nevertheless, little is known about the chemical inhomogeneity at interfaces of polymorphic two-dimensional transition metal dichalcogenides (TMDs) and its influence on the properties of the 2D materials. Here we report one-dimensional monatomic segregation at coherent semiconductor-metal 1H/1T interfaces of Mo-doped WS2 monolayers. The monatomic interface segregation takes place at an intact transition metal plane and is associated with the topological defects caused by reflection symmetry breaking at the 1T/1H interfaces and the weak difference in bonding strength between Mo-S and W-S. This finding enriches our understanding of the interaction between topological defects and impurities in 2D crystals and enlightens a potential approach to manipulate the properties of 2D TMDs by local chemical modification and interface engineering for applications in 2D TMD electronic devices.

9.
Adv Mater ; 30(38): e1803588, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30073708

RESUMEN

Nitrogen-doped graphene exhibits high electrocatalytic activity toward the oxygen reduction reaction (ORR), which is essential for many renewable energy technologies. To maximize the catalytic efficiency, it is desirable to have both a high concentration of robust nitrogen dopants and a large accessible surface of the graphene electrodes for rapid access of oxygen to the active sites. Here, 3D bicontinuous nitrogen-doped mesoporous graphene synthesized by a low-temperature carbide-mediated graphene-growth method is reported. The mesoporous graphene has a mesoscale pore size of ≈25 nm and large specific surface area of 1015 m2 g-1 , which can effectively host and stabilize a high concentration of nitrogen dopants. Accordingly, it shows an excellent electrocatalytic activity toward the ORR with an efficient four-electron-dominated pathway and high durability in alkaline media. The synthesis route developed herein provides a new economic approach to synthesize bicontinuous porous graphene materials with tunable characteristic length, porosity, and chemical doping as high efficiency electrocatalysts for a wide range of electrochemical reactions.

10.
Adv Sci (Weinh) ; 2(8): 1500086, 2015 08.
Artículo en Inglés | MEDLINE | ID: mdl-27980966

RESUMEN

Nanoporous metals similar to paper in form are developed using Japanese washi paper as a template to create hierarchical porous electrodes. This method is used to create a trimodal -nanoporous Au electrode, as a well as a hierarchical NiMn electrode that achieves high electrochemical capacitance and a rapid rate of oxygen evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA