RESUMEN
Aim: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is thought to involve a variety of neurophysiological characteristics. Event-related potentials (ERPs) reflect cognitive functions in the brain's cognitive processing. In this study, we investigated differences in P300 and N100 of ERPs between ASD and typically developing groups and focused on the relationship between the components of ERPs and measures of autistic traits and sensory processing characteristics. Methods: ERPs were measured in 96 subjects in the ASD group and 62 subjects in the age- and sex-adjusted typically developing group. Correlations between each component and the scores of the Autism-Spectrum Quotient Japanese version (AQ-J) and the Adolescent and Adult Sensory Profile (AASP) were also evaluated. Results: The ASD group showed a significant decrease in the amplitude of N100 at C3. Furthermore, a negative correlation was found between lower amplitude at C3 of N100 and low registered sensory scores in both groups. Conclusion: Our findings imply that the N100 amplitude at C3 could be a potential indicator for examining the neurophysiological traits of ASD; however, these results should be interpreted with caution due to their preliminary nature. These tentative insights into sensory processing anomalies may be discernible in specific subsets of the ASD population, providing a foundation for future investigative pathways.
RESUMEN
BACKGROUND: A small lateral medullary lesion could produce isolated impairment of temperature sensation without concomitant impaired pain sensation. However, only one such case has ever been reported, and there are no reports on subjective symptoms and detailed somatosensory testing. CASE PRESENTATION: Herein, we report the case of a 53-year-old female patient presenting with impaired temperature sensation on the left half of her body, from the neck down, following a small infarction of the right midlateral medulla. The chronological changes in the patient's introspection regarding impairment of thermoception and the results of detailed somatosensory tests, including thermal sense, are shown in this report. CONCLUSIONS: Thorough somatosensory tests, personal descriptions of symptoms, and electrophysiological quantification of similar cases are needed to improve our understanding of the neurological separation of the sensations of pain and temperature at the medullary level.