Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto principal
Asunto de la revista
Intervalo de año de publicación
1.
J Phys Chem A ; 118(31): 6034-49, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24945616

RESUMEN

An investigation into the dissociative recombination process for H(13)CO(+) using merged ion-electron beam methods has been performed at the heavy ion storage ring CRYRING, Stockholm, Sweden. We have measured the branching fractions of the different product channels at ∼ 0 eV collision energy to be the following: CO + H 87 ± 2%, OH + C 9 ± 2%, and O + CH 4 ± 2%. The formation of electronically excited CO in the dominant reaction channel has also been studied, and we report the following tentative branching fractions for the different CO product electronic states: CO(X (1)Σ(+)) + H, 54 ± 10%; CO(a (3)Π) + H, 23 ± 4%; and CO(a' (3)Σ(+)) + H, 23 ± 4%. The absolute cross section between ∼ 2-50 000 meV was measured and showed resonance structures between 3 and 15 eV. The cross section was fitted in the energy range relevant to astrophysics, i.e., between 1 and 300 meV, and was found to follow the expression σ = 1.3 ± 0.3 × 10(-16) E(-1.29 ± 0.05) cm(2) and the corresponding thermal rate constant was determined to be k(T) = 2.0 ± 0.4 × 10(-7)(T/300)(-0.79 ± 0.05) cm(3) s(-1). Radioastronomical observations with the IRAM 30 m telescope of HCO(+) toward the Red Rectangle yielded an upper column density limit of 4 × 10(11) cm(-2) of HCO(+) at the 1σ level in that object, indicating that previous claims that the dissociative recombination of HCO(+) plays an important role in the production of excited CO molecules emitting the observed Cameron bands in that object are not supported.

2.
J Phys Chem A ; 117(39): 9999-10005, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23651407

RESUMEN

CH4(+) is an important molecular ion in the astrochemistry of diffuse clouds, dense clouds, cometary comae, and planetary ionospheres. However, the rate of one of the common destruction mechanisms for molecular ions in these regions, dissociative recombination (DR), is somewhat uncertain. Here, we present absolute measurements for the DR of CH4(+) made using the heavy ion storage ring CRYRING in Stockholm, Sweden. From our collision-energy dependent cross-sections, we infer a thermal rate constant of k(Te) = 1.71(±0.02) × 10(­6)(Te/300)(−0.66(±0.02)) cm3 s(­1) over the region of electron temperatures 10 ≤ Te ≤ 1000 K. At low collision energies, we have measured the branching fractions of the DR products to be CH4 (0.00 ± 0.00); CH3 + H (0.18 ± 0.03); CH2 + 2H (0.51 ± 0.03); CH2 + H2 (0.06 ± 0.01); CH + H2 + H (0.23 ± 0.01); and CH + 2H2 (0.02 ± 0.01), indicating that two or more C­H bonds are broken in 80% of all collisions.

3.
Phys Chem Chem Phys ; 12(37): 11670-3, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20714489

RESUMEN

The dissociative recombination of the acetaldehyde cation, CH(3)CHO(+), has been investigated at the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory in Stockholm, Sweden. The dependence of the absolute cross section of the reaction on the relative kinetic energy has been determined and a thermal rate coefficient of k(T) = (1.5 ± 0.2) × 10(-6) (T/300)(-0.70±0.02) cm(3) s(-1) has been deduced, which is valid for electron temperatures between ∼10 and 1000 K. The branching fractions of the reaction were studied at ∼0 eV relative kinetic energy and we found that breaking one of the bonds between two of the heavy atoms occurs in 72 ± 2% of the reactions. In the remaining events the three heavy atoms stay in the same product fragment. While the branching fractions are fairly similar to the results from an earlier investigation into the dissociative recombination of the fully deuterated acetaldehyde cation, CD(3)CDO(+), the thermal rate coefficient is somewhat larger for CH(3)CHO(+). Astrochemical implications of the results are discussed.


Asunto(s)
Acetaldehído/química , Cationes/química , Cinética , Temperatura
4.
J Chem Phys ; 130(21): 214302, 2009 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-19508064

RESUMEN

The vibrational population of the hydroxyl radical, OH, formed in the OH+H+H channel arising from the dissociative recombination of the hydronium ion, H(3)O(+), has been investigated at the storage ring CRYRING using a position-sensitive imaging detector. Analysis shows that the OH fragments are predominantly produced in the v=0 and v=1 states with almost equal probabilities. This observation is in disagreement with earlier FALP experiments, which reported OH(v=0) as the dominant product. Possible explanations for this difference are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA