Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Ear Nose Throat J ; : 1455613231183392, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365848

RESUMEN

Background: Axial pattern flaps are a common reconstructive option following resection of soft tissue malignancies. We determine the early dependence of an axial flap on wound bed vasculature by isolating the underlying wound bed and depriving contact with the overlying flap. Materials and Methods: Mice were divided into 5 groups: No silicone (n = 7), silicone in the proximal 50% of the wound bed (n = 8), silicone in the distal 50% of the wound bed (n = 5), silicone over the full length of the wound bed with pedicle preservation (n = 5), and silicone over the full length of the wound bed with pedicle sacrifice (n = 5). The pedicle was the lateral thoracic artery. Daily photographs were taken, and the percent of viable flap was determined using ImageJ© software (public domain JAVA image processing program, National Institute of Health, Bethesda, MA). Percent flap viability for each group was compared to the no silicone group, which acted as the reference. Results: Mean differences in percent flap necrotic area (with 95% confidence interval) compared to the no silicone group were -0.15% (-15.09 to 14.09), 2.07% (-5.26 to 9.39), 2.98% (-10.98 to 16.94), and 14.21% (0.48 to 27.94) for the full-length silicone with preserved pedicle, proximal silicone, distal silicone, and full-length silicone with sacrificed pedicle groups, respectively. The full-length silicone with sacrificed pedicle group had a significant difference in flap viability (P = .045) compared to the no silicone group. Conclusion: We investigate the role of the wound bed vasculature in a murine axial flap model and demonstrate that the wound bed vasculature is not essential for early distal flap survival.

3.
Sci Rep ; 11(1): 15384, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321569

RESUMEN

Determination of treatment response to immunotherapy in glioblastoma multiforme (GBM) is a process which can take months. Detection of CD8+ T cell recruitment to the tumor with a noninvasive imaging modality such as positron emission tomography (PET) may allow for tumor characterization and early evaluation of therapeutic response to immunotherapy. In this study, we utilized 89Zr-labeled anti-CD8 cys-diabody-PET to provide proof-of-concept to detect CD8+ T cell immune response to oncolytic herpes simplex virus (oHSV) M002 immunotherapy in a syngeneic GBM model. Immunocompetent mice (n = 16) were implanted intracranially with GSC005 GBM tumors, and treated with intratumoral injection of oHSV M002 or saline control. An additional non-tumor bearing cohort (n = 4) receiving oHSV M002 treatment was also evaluated. Mice were injected with 89Zr-labeled anti-CD8 cys-diabody seven days post oHSV administration and imaged with a preclinical PET scanner. Standardized uptake value (SUV) was quantified. Ex vivo tissue analyses included autoradiography and immunohistochemistry. PET imaging showed significantly higher SUV in tumors which had been treated with M002 compared to those without M002 treatment (p = 0.0207) and the non-tumor bearing M002 treated group (p = 0.0021). Accumulation in target areas, especially the spleen, was significantly reduced by blocking with the non-labeled diabody (p < 0.001). Radioactive probe accumulation in brains was consistent with CD8+ cell trafficking patterns after oHSV treatment. This PET imaging strategy could aid in distinguishing responders from non-responders during immunotherapy of GBM.


Asunto(s)
Antígenos CD8/inmunología , Linfocitos T CD8-positivos/inmunología , Glioma/terapia , Viroterapia Oncolítica/métodos , Animales , Antígenos CD8/antagonistas & inhibidores , Antígenos CD8/aislamiento & purificación , Linfocitos T CD8-positivos/virología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioma/diagnóstico por imagen , Glioma/inmunología , Glioma/virología , Humanos , Ratones , Radioisótopos/farmacología , Simplexvirus/genética , Tomografía Computarizada por Rayos X , Circonio/farmacología
4.
Curr Med Chem ; 27(24): 4016-4038, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30836909

RESUMEN

BACKGROUND: Targeted Radioimmunotherapy (RIT) is an attractive approach to selectively localize therapeutic radionuclides to malignant cells within primary and metastatic tumors while sparing normal tissues from the effects of radiation. Many human malignancies express B7-H3 on the tumor cell surface, while expression on the majority of normal tissues is limited, presenting B7-H3 as a candidate target for RIT. This review provides an overview of the general principles of targeted RIT and discusses publications that have used radiolabeled B7-H3-targeted antibodies for RIT of cancer in preclinical or clinical studies. METHODS: Databases including PubMed, Scopus, and Google Scholar were searched for publications through June 2018 using a combination of terms including "B7-H3", "radioimmunotherapy", "targeted", "radiotherapy", and "cancer". After screening search results for relevancy, ten publications were included for discussion. RESULTS: B7-H3-targeted RIT studies to date range from antibody development and assessment of novel Radioimmunoconjugates (RICs) in animal models of human cancer to phase II/III trials in humans. The majority of clinical studies have used B7-H3-targeted RICs for intra- compartment RIT of central nervous system malignancies. The results of these studies have indicated high tolerability and favorable efficacy outcomes, supporting further assessment of B7-H3-targeted RIT in larger trials. Preclinical B7-H3-targeted RIT studies have also shown encouraging therapeutic outcomes in a variety of solid malignancies. CONCLUSION: B7-H3-targeted RIT studies over the last 15 years have demonstrated feasibility for clinical development and support future assessment in a broader array of human malignancies. Future directions worthy of exploration include strategies that combine B7-H3- targeted RIT with chemotherapy or immunotherapy.


Asunto(s)
Neoplasias , Animales , Anticuerpos Monoclonales , Antígenos B7 , Humanos , Inmunoconjugados , Inmunoterapia , Neoplasias/terapia , Radioinmunoterapia
5.
Eur J Nucl Med Mol Imaging ; 47(6): 1412-1426, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31773232

RESUMEN

PURPOSE: There is a clinical need for agents that target glioma cells for non-invasive and intraoperative imaging to guide therapeutic intervention and improve the prognosis of glioma. Matrix metalloproteinase (MMP)-14 is overexpressed in glioma with negligible expression in normal brain, presenting MMP-14 as an attractive biomarker for imaging glioma. In this study, we designed a peptide probe containing a near-infrared fluorescence (NIRF) dye/quencher pair, a positron emission tomography (PET) radionuclide, and a moiety with high affinity to MMP-14. This novel substrate-binding peptide allows dual modality imaging of glioma only after cleavage by MMP-14 to activate the quenched NIRF signal, enhancing probe specificity and imaging contrast. METHODS: MMP-14 expression and activity in human glioma tissues and cells were measured in vitro by immunofluorescence and gel zymography. Cleavage of the novel substrate and substrate-binding peptides by glioma cells in vitro and glioma xenograft tumors in vivo was determined by NIRF imaging. Biodistribution of the radiolabeled MMP-14-binding peptide or substrate-binding peptide was determined in mice bearing orthotopic patient-derived xenograft (PDX) glioma tumors by PET imaging. RESULTS: Glioma cells with MMP-14 activity showed activation and retention of NIRF signal from the cleaved peptides. Resected mouse brains with PDX glioma tumors showed tumor-to-background NIRF ratios of 7.6-11.1 at 4 h after i.v. injection of the peptides. PET/CT images showed localization of activity in orthotopic PDX tumors after i.v. injection of 68Ga-binding peptide or 64Cu-substrate-binding peptide; uptake of the radiolabeled peptides in tumors was significantly reduced (p < 0.05) by blocking with the non-labeled-binding peptide. PET and NIRF signals correlated linearly in the orthotopic PDX tumors. Immunohistochemistry showed co-localization of MMP-14 expression and NIRF signal in the resected tumors. CONCLUSIONS: The novel MMP-14 substrate-binding peptide enabled PET/NIRF imaging of glioma models in mice, warranting future image-guided resection studies with the probe in preclinical glioma models.


Asunto(s)
Glioma , Metaloproteinasa 14 de la Matriz , Animales , Línea Celular Tumoral , Glioma/diagnóstico por imagen , Ratones , Imagen Óptica , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Distribución Tisular
6.
Theranostics ; 9(17): 5085-5104, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31410203

RESUMEN

Imaging plays a central role in evaluating responses to therapy in neuro-oncology patients. The advancing clinical use of immunotherapies has demonstrated that treatment-related inflammatory responses mimic tumor growth via conventional imaging, thus spurring the development of new imaging approaches to adequately distinguish between pseudoprogression and progressive disease. To this end, an increasing number of advanced imaging techniques are being evaluated in preclinical and clinical studies. These novel molecular imaging approaches will serve to complement conventional response assessments during immunotherapy. The goal of these techniques is to provide definitive metrics of tumor response at earlier time points to inform treatment decisions, which has the potential to improve patient outcomes. This review summarizes the available immunotherapy regimens, clinical response criteria, current state-of-the-art imaging approaches, and groundbreaking strategies for future implementation to evaluate the anti-tumor and immune responses to immunotherapy in neuro-oncology applications.


Asunto(s)
Inmunoterapia/métodos , Neoplasias del Sistema Nervioso/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Nanomedicina Teranóstica/métodos , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias del Sistema Nervioso/terapia , Nanomedicina Teranóstica/tendencias
7.
Ann Surg ; 270(1): 69-76, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30649014

RESUMEN

OBJECTIVE: This review details the agents for fluorescence-guided nerve imaging in both preclinical and clinical use to identify factors important in selecting nerve-specific fluorescent agents for surgical procedures. BACKGROUND: Iatrogenic nerve injury remains a significant cause of morbidity in patients undergoing surgical procedures. Current real-time identification of nerves during surgery involves neurophysiologic nerve stimulation, which has practical limitations. Intraoperative fluorescence-guided imaging provides a complimentary means of differentiating tissue types and pathology. Recent advances in fluorescence-guided nerve imaging have shown promise, but the ideal agent remains elusive. METHODS: In February 2018, PubMed was searched for articles investigating peripheral nerve fluorescence. Key terms used in this search include: "intraoperative, nerve, fluorescence, peripheral nerve, visualization, near infrared, and myelin." Limits were set to exclude articles exclusively dealing with central nervous system targets or written in languages other than English. References were cross-checked for articles not otherwise identified. RESULTS: Of the nonspecific agents, tracers that rely on axonal transport showed the greatest tissue specificity; however, neurovascular dyes already enjoy wide clinical use. Fluorophores specific to nerve moieties result in excellent nerve to background ratios. Although noteworthy findings on tissue specificity, toxicity, and route of administration specific to each fluorescent agent were reported, significant data objectively quantifying nerve-specific fluorescence and toxicity are lacking. CONCLUSIONS: Fluorescence-based nerve enhancement has advanced rapidly over the past 10 years with potential for continued utilization and progression in translational research. An ideal agent would be easily administered perioperatively, would not cross the blood-brain barrier, and would fluoresce in the near-infrared spectrum. Agents administered systemically that target nerve-specific moieties have shown the greatest promise. Based on the heterogeneity of published studies and methods for reporting outcomes, it appears that the development of an optimal nerve imaging agent remains challenging.


Asunto(s)
Cuidados Intraoperatorios/métodos , Imagen Óptica/métodos , Nervios Periféricos/diagnóstico por imagen , Medios de Contraste , Colorantes Fluorescentes , Humanos , Especificidad de Órganos , Sensibilidad y Especificidad
9.
Int J Mol Sci ; 19(4)2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29561763

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a poor prognosis. There is a clinical need for effective, targeted therapy strategies that destroy both differentiated TNBC cells and TNBC cancer initiating cells (CICs), as the latter are implicated in the metastasis and recurrence of TNBC. Chondroitin sulfate proteoglycan 4 (CSPG4) is overexpressed on differentiated tumor cells and CICs obtained from TNBC patient specimens, suggesting that CSPG4 may be a clinically relevant target for the imaging and therapy of TNBC. The purpose of this study was to determine whether α-particle radioimmunotherapy (RIT) targeting TNBC cells using the CSPG4-specific monoclonal antibody (mAb) 225.28 as a carrier was effective at eliminating TNBC tumors in preclinical models. To this end, mAb 225.28 labeled with 212Pb (212Pb-225.28) as a source of α-particles for RIT was used for in vitro Scatchard assays and clonogenic survival assays with human TNBC cells (SUM159 and 2LMP) grown as adherent cells or non-adherent CIC-enriched mammospheres. Immune-deficient mice bearing orthotopic SUM159 or 2LMP xenografts were injected i.v. with the targeted (225.28) or irrelevant isotype-matched control (F3-C25) mAbs, labeled with 99mTc, 125I, or 212Pb for in vivo imaging, biodistribution, or tumor growth inhibition studies. 212Pb-225.28 bound to adherent SUM159 and 2LMP cells and to CICs from SUM159 and 2LMP mammospheres with a mean affinity of 0.5 nM. Nearly ten times more binding sites per cell were present on SUM159 cells and CICs compared with 2LMP cells. 212Pb-225.28 was six to seven times more effective than 212Pb-F3-C25 at inhibiting SUM159 cell and CIC clonogenic survival (p < 0.05). Radiolabeled mAb 225.28 showed significantly higher uptake than radiolabeled mAb F3-C25 in SUM159 and 2LMP xenografts (p < 0.05), and the uptake of 212Pb-225.28 in TNBC xenografts was correlated with target epitope expression. 212Pb-225.28 caused dose-dependent growth inhibition of SUM159 xenografts; 0.30 MBq 212Pb-225.28 was significantly more effective than 0.33 MBq 212Pb-F3-C25 at inhibiting tumor growth (p < 0.01). These results suggest that CSPG4-specific 212Pb-225.28 is a useful reagent for RIT of CSPG4-expressing tumors, including metastatic TNBC.


Asunto(s)
Anticuerpos/uso terapéutico , Antígenos/inmunología , Radioisótopos de Plomo/química , Proteoglicanos/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Células Clonales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Desnudos , Células Madre Neoplásicas/patología , Distribución Tisular , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Nucl Med Biol ; 58: 67-73, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29413459

RESUMEN

INTRODUCTION: We recently validated monoclonal antibody (mAb) 376.96 as an effective carrier for targeted α-particle radioimmunotherapy (RIT) with 212Pb in ovarian cancer mouse models. In this study, we tested the binding of radiolabeled mAb 376.96 to human pancreatic ductal adenocarcinoma (PDAC) cells and localization in xenografts in immune-deficient mice and evaluated 212Pb-labeled 376.96 (212Pb-376.96) for PDAC therapy. METHODS: In vitro Scatchard assays assessed the specific binding of 212Pb-376.96 to human PDAC3 adherent differentiated cells and non-adherent cancer initiating cells (CICs) dissociated from tumorspheres. In vitro clonogenic assays were used to measure the proliferation of adherent PDAC3 cells and CIC-enriched tumorspheres treated with 212Pb-376.96 or the irrelevant isotype-matched 212Pb-F3-C25. Mice bearing patient derived pancreatic cancer Panc039 xenografts were i.v. injected with 0.17-0.70 MBq 212Pb-376.96 or isotype control 212Pb-F3-C25, and used for biodistribution and tumor growth inhibition studies. Mice bearing orthotopic PDAC3 xenografts were i.v. co-injected with 99mTc-376.96 and 125I-F3-C25 and used for biodistribution studies. RESULTS: 212Pb-376.96 specifically bound to PDAC3 adherent and dissociated tumorsphere CICs; Kd values averaged 9.0 and 21.7 nM, respectively, with 104-105 binding sites/cell. 212Pb-376.96 inhibited the clonogenic survival of PDAC3 cells or CICs dissociated from tumorspheres 3-6 times more effectively than isotype-matched control 212Pb-F3-C25. Panc039 s.c. tumors showed significantly higher uptake of 212Pb-376.96 (14.0 ±â€¯2.1% ID/g) compared to 212Pb-F3-C25 (6.5 ±â€¯0.9% ID/g, p < .001) at 24 h after dosing. Orthotopic PDAC3 tumors showed significantly higher uptake of 99mTc-376.96 (6.4 ±â€¯1.8% ID/g) compared to 125I-F3-C25 (3.9 ±â€¯0.9% ID/g, p < .05) at 24 h after dosing. Panc039 tumor growth was significantly inhibited by 212Pb-376.96 compared to 212Pb-F3-C25 or non-treated control tumors (p < .05). CONCLUSION: Our results provide evidence for the efficacy of B7-H3 targeted RIT against preclinical models of pancreatic ductal adenocarcinoma (PDAC) and support future studies with 212Pb-376.96 in combination with chemotherapy to potentiate efficacy against PDAC.


Asunto(s)
Inmunoconjugados/uso terapéutico , Radioisótopos de Plomo , Neoplasias Pancreáticas/radioterapia , Radioinmunoterapia/métodos , Animales , Diferenciación Celular/efectos de la radiación , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Humanos , Inmunoconjugados/farmacocinética , Marcaje Isotópico , Ratones , Distribución Tisular
11.
J Surg Oncol ; 116(7): 898-906, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28628728

RESUMEN

BACKGROUND AND OBJECTIVES: Optical imaging to guide cancer resections is rapidly transitioning into the operating room. However, the sensitivity of this technique to detect subclinical disease is yet characterized. The purpose of this study was to determine the minimum range of cancer cells that can be detected by antibody-based fluorescence imaging. METHODS: 2LMP (breast), COLO-205 (colon), MiaPaca-2 (pancreas), and SCC-1 (head and neck) cells incubated in vitro with cetuximab-IRDye800CW (dose range 8.6-86 nM) were implanted subcutaneously in mice (n = 3 mice, 5 tumors/mouse). Following incubation with 8.6 × 10-2 µM of cetuximab-IRDye800CW in vitro, serial dilutions of each cell type (1 × 103 -1 × 106 ) were implanted subcutaneously (n = 3, 5 tumors/mouse). Tumors were imaged with Pearl Impulse and Xenogen IVIS 100 imaging systems. Scatchard analysis was performed to determine receptor density and kinetics for each cell line. RESULTS: Under conditions of minimal cetuximab-IRDye800CW exposure to low cellular quantity, closed-field fluorescence imaging theoretically detected a minimum of 4.2 × 104 -9.5 × 104 2LMP cells, 1.9 × 105 -4.5 × 105 MiaPaca-2 cells, and 2.4 × 104 -6.7 × 104 SCC-1 cells; COLO-205 cells could not be identified. Higher EGFR-mediated uptake of cetuximab correlated with sensitivity of detection. CONCLUSION: This study supports the clinical utility of cetuximab-IRDye800CW to sensitively localize subclinical disease in the surgical setting.


Asunto(s)
Neoplasias/diagnóstico por imagen , Neoplasias/cirugía , Imagen Óptica/métodos , Cirugía Asistida por Computador/métodos , Animales , Bencenosulfonatos/administración & dosificación , Bencenosulfonatos/farmacocinética , Línea Celular Tumoral , Cetuximab/administración & dosificación , Cetuximab/farmacocinética , Femenino , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/farmacocinética , Xenoinjertos , Humanos , Indoles/administración & dosificación , Indoles/farmacocinética , Ratones , Ratones Desnudos , Compuestos de Organotecnecio/administración & dosificación , Compuestos de Organotecnecio/farmacocinética , Radiofármacos/administración & dosificación , Radiofármacos/farmacocinética
12.
Nucl Med Biol ; 47: 23-30, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28104527

RESUMEN

INTRODUCTION: Novel therapies that effectively kill both differentiated cancer cells and cancer initiating cells (CICs), which are implicated in causing chemotherapy-resistance and disease recurrence, are needed to reduce the morbidity and mortality of ovarian cancer. These studies used monoclonal antibody (mAb) 376.96, which recognizes a B7-H3 epitope expressed on ovarian cancer cells and CICs, as a carrier molecule for targeted α-particle radioimmunotherapy (RIT) in preclinical models of human ovarian cancer. METHODS: mAb 376.96 was conjugated to the chelate 2-(4-isothiocyanotobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoylmethyl)-cyclododecane (TCMC) and radiolabeled with 212Pb, a source of α-particles. In vitro Scatchard assays determined the specific binding of 212Pb-376.96 to adherent differentiated or non-adherent CIC-enriched ES-2 and A2780cp20 ovarian cancer cells. Adherent ovarian cancer cells and non-adherent CIC-enriched tumorspheres treated in vitro with 212Pb-376.96 or the irrelevant isotype-matched 212Pb-F3-C25 were assessed for clonogenic survival. Mice bearing i.p. ES-2 or A2780cp20 xenografts were injected i.p. with 0.17-0.70MBq 212Pb-376.96 or 212Pb-F3-C25 and were used for in vivo imaging, ex vivo biodistribution, and therapeutic survival studies. RESULTS: 212Pb-376.96 was obtained in high yield and purity (>98%); Kd values ranged from 10.6-26.6nM for ovarian cancer cells, with 104-105 binding sites/cell. 212Pb-376.96 inhibited the clonogenic survival of ovarian cancer cells up to 40 times more effectively than isotype-matched control 212Pb-F3-C25; combining 212Pb-376.96 with carboplatin significantly decreased clonogenic survival compared to either agent alone. In vivo imaging and biodistribution analysis 24h after i.p. injection of 212Pb-376.96 showed high peritoneal retention and tumor tissue accumulation (28.7% ID/g in ES-2 ascites, 73.1% ID/g in A2780cp20 tumors); normal tissues showed lower and comparable uptake for 212Pb-376.96 and 212Pb-F3-C25. Tumor-bearing mice treated with 212Pb-376.96 alone or combined with carboplatin survived 2-3 times longer than mice treated with 212Pb-F3-C25 or non-treated controls. CONCLUSION: These results support additional RIT studies with 212Pb-376.96 for future evaluation in patients with ovarian cancer.


Asunto(s)
Antígenos B7/inmunología , Epítopos/inmunología , Radioisótopos de Plomo/uso terapéutico , Neoplasias Ováricas/radioterapia , Radioinmunoterapia/métodos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Diferenciación Celular , Línea Celular Tumoral , Supervivencia Celular , Transformación Celular Neoplásica , Femenino , Humanos , Ratones , Neoplasias Ováricas/patología
13.
Nucl Med Biol ; 43(7): 391-6, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27179247

RESUMEN

INTRODUCTION: The biodistribution and toxicology of a radiotherapeutic (212)Pb-trastuzumab conjugate were evaluated in nonhuman primates to meet the investigational new drug requirements prior to a phase I clinical trial in human subjects. METHODS: Male cynomolgus monkeys (n=3/group) were injected intraperitoneally with the (212)Pb-trastuzumab conjugate and terminated at 8h, 10d, and 90d post-injection. Quantitative imaging studies in phantoms and monkeys were conducted using a planar gamma camera and a high purity germanium (HPGe) detector out to 48h following injection. Biodistribution analyses were conducted at 8h; all tissues and time points were evaluated for macroscopic and microscopic pathology. Blood samples were taken throughout the 90d study period for assessment of hematology parameters and serum chemistry parameters. RESULTS: Quantitative gamma camera imaging and region-of-interest analyses of phantoms and monkeys indicated that 95.5±5.0% of the decay-corrected (212)Pb activity was retained in the peritoneal region up to 48h following administration of the (212)Pb-trastuzumab. Gamma-ray spectroscopy analyses confirmed that 87.6±4.5% of the decay-corrected (212)Bi activity was also retained in the peritoneal cavity during this time. Serum chemistry parameters for all groups always fell within normal ranges. Gross and histopathology evaluations showed no radiation-related toxicity in any tissue at any time. CONCLUSION: In vivo imaging and biodistribution analyses showed that about 90% of both (212)Pb and decay product (212)Bi remained in the monkey peritoneal cavity. The imaging methods could also be applied to human subjects. The lack of toxicity observed in monkeys following intraperitoneal injection of the (212)Pb-trastuzumab conjugate supports its clinical assessment in humans.


Asunto(s)
Radioisótopos de Plomo , Cintigrafía/métodos , Trastuzumab/farmacocinética , Trastuzumab/toxicidad , Animales , Línea Celular Tumoral , Macaca fascicularis , Masculino , Cintigrafía/instrumentación , Distribución Tisular , Pruebas de Toxicidad
14.
Bioconjug Chem ; 27(1): 130-42, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26603218

RESUMEN

Developing new strategies to rapidly incorporate the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core into biological targeting vectors in radiopharmaceuticals continues to expand as molecules become more complex and as efforts to minimize nonspecific binding increase. This work examines a novel isothiocyanate-functionalized bifunctional chelate based on 2,2'-dipicolylamine (DPA) specifically designed for complexing the fac-[M(I)(CO)3](+) core. Two strategies (postlabeling and prelabeling) were explored using the isothiocyanate-functionalized DPA to determine the effectiveness of assembly on the overall yield and purity of the complex with amine containing biomolecules. A model amino acid (lysine) examined (1) amine conjugation of isothiocyanate-functionalized DPA followed by complexation with fac-[M(I)(CO)3](+) (postlabeling) and (2) complexation of fac-[M(I)(CO)3](+) with isothiocyanate-functionalized DPA followed by amine conjugation (prelabeling). Conducted with stable Re and radioactive (99m)Tc analogs, both strategies formed the product in good to excellent yields under macroscopic and radiotracer concentrations. A synthetic peptide (AE105) which targets an emerging biomarker in CaP prognosis, urokinase-type plasminogen activator receptor (uPAR), was also explored using the isothiocyanate-functionalized DPA strategy. In vitro PC-3 (uPAR+) cell uptake assays with the (99m)Tc-labeled peptide (8a) showed 4.2 ± 0.5% uptake at 4 h. In a murine model bearing PC-3 tumor xenografts, in vivo biodistribution of 8a led to favorable tumor uptake (3.7 ± 0.7% ID/g) at 4 h p.i. with relatively low accumulation (<2% ID/g) in normal organs not associated with normal peptide excretion. These results illustrate the promise of the isothiocyanate-functionalized approach for labeling amine containing biological targeting vectors with fac-[M(I)(CO)3](+).


Asunto(s)
Quelantes/química , Quelantes/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Radiofármacos/farmacocinética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones Desnudos , Terapia Molecular Dirigida/métodos , Compuestos de Organotecnecio/química , Péptidos/química , Radiofármacos/química , Renio/química , Tecnecio/química , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Dalton Trans ; 43(19): 6998-7001, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24710681

RESUMEN

A versatile strategy to prepare fac-[M(I)(CO)3](+) and cis-[M(I)(CO)2](+) (M = Re, (99m)Tc) complexes was developed using Huisgen click chemistry and monodentate phosphine ligands to readily incorporate biomolecules and tailor the chemical properties.


Asunto(s)
Complejos de Coordinación/química , Renio/química , Tecnecio/química , Química Clic , Cristalografía por Rayos X , Ligandos , Conformación Molecular , Fosfinas/química
17.
Bioconjug Chem ; 25(3): 579-92, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24568284

RESUMEN

The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction was used to incorporate alkyne-functionalized dipicolylamine (DPA) ligands (1 and 3) for fac-[M(I)(CO)3](+) (M = Re/(99m)Tc) complexation into an α-melanocyte stimulating hormone (α-MSH) peptide analogue. A novel DPA ligand with carboxylate substitutions on the pyridyl rings (3) was designed to increase the hydrophilicity and to decrease in vivo hepatobiliary retention of fac-[(99m)Tc(I)(CO)3](+) complexes used in single photon emission computed tomography (SPECT) imaging studies with targeting biomolecules. The fac-[Re(I)(CO)3(3)] complex (4) was used for chemical characterization and X-ray crystal analysis prior to radiolabeling studies between 3 and fac-[(99m)Tc(I)(OH2)3(CO)3](+). The corresponding (99m)Tc complex (4a) was obtained in high radiochemical yields, was stable in vitro for 24 h during amino acid challenge and serum stability assays, and showed increased hydrophilicity by log P analysis compared to an analogous complex with nonfunctionalized pyridine rings (2a). An α-MSH peptide functionalized with an azide was labeled with fac-[M(I)(CO)3](+) using both click, then chelate (CuAAC reaction with 1 or 3 followed by metal complexation) and chelate, then click (metal complexation of 1 and 3 followed by CuAAC with the peptide) strategies to assess the effects of CuAAC conditions on fac-[M(I)(CO)3](+) complexation within a peptide framework. The peptides from the click, then chelate strategy had different HPLC tR's and in vitro stabilities compared to those from the chelate, then click strategy, suggesting nonspecific coordination of fac-[M(I)(CO)3](+) using this synthetic route. The fac-[M(I)(CO)3](+)-complexed peptides from the chelate, then click strategy showed >90% stability during in vitro challenge conditions for 6 h, demonstrated high affinity and specificity for the melanocortin 1 receptor (MC1R) in IC50 analyses, and led to moderately high uptake in B16F10 melanoma cells. Log P analysis of the (99m)Tc-labeled peptides confirmed the enhanced hydrophilicity of the peptide bearing the novel, carboxylate-functionalized DPA chelate (10a') compared to the peptide with the unmodified DPA chelate (9a'). In vivo biodistribution analysis of 9a' and 10a' showed moderate tumor uptake in a B16F10 melanoma xenograft mouse model with enhanced renal uptake and surprising intestinal uptake for 10a' compared to predominantly hepatic accumulation for 9a'. These results, coupled with the versatility of CuAAC, suggests this novel, hydrophilic chelate can be incorporated into numerous biomolecules containing azides for generating targeted fac-[M(I)(CO)3](+) complexes in future studies.


Asunto(s)
Aminas/química , Monóxido de Carbono/química , Complejos de Coordinación/farmacocinética , Melanoma Experimental/diagnóstico , Ácidos Picolínicos/química , Radiofármacos/farmacocinética , Renio/química , Tecnecio/química , alfa-MSH/química , Animales , Química Clic , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Ratones , Ratones Endogámicos C57BL , Radiofármacos/síntesis química , Radiofármacos/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Células Tumorales Cultivadas
18.
Inorg Chem ; 53(4): 1943-5, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24483834

RESUMEN

Isoxazole ring formation was examined as a potential Cu-free alternative click reaction to Cu(I)-catalyzed alkyne/azide cycloaddition. The isoxazole reaction was explored at macroscopic and radiotracer concentrations with the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core for use as a noncoordinating linker strategy between covalently linked molecules. Two click assembly methods (click, then chelate and chelate, then click) were examined to determine the feasibility of isoxazole ring formation with either alkyne-functionalized tridentate chelates or their respective fac-[M(I)(CO)3](+) complexes with a model nitrile oxide generator. Macroscale experiments, alkyne-functionalized chelates, or Re complexes indicate facile formation of the isoxazole ring. (99m)Tc experiments demonstrate efficient radiolabeling with click, then chelate; however, the chelate, then click approach led to faster product formation, but lower yields compared to the Re analogues.


Asunto(s)
Quelantes/química , Isoxazoles/química , Compuestos de Organotecnecio/química , Renio/química , Cromatografía Líquida de Alta Presión , Química Clic , Cobre/química , Reacción de Cicloadición , Ligandos
19.
Bioorg Med Chem Lett ; 23(2): 565-8, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23232055

RESUMEN

Prostate-specific membrane antigen (PSMA) is a notable biomarker for diagnostic and therapeutic applications in prostate cancer. Gold nanoparticles (AuNPs) provide an attractive nanomaterial platform for combining a variety of targeting, imaging, and cytotoxic agents into a unified device for biomedical research. In this study, we present the generation and evaluation of the first AuNP system functionalized with a small molecule phosphoramidate peptidomimetic inhibitor for the targeted delivery to PSMA-expressing prostate cancer cells. The general approach involved the conjugation of streptavidin-coated AuNPs with a biotin-linked PSMA inhibitor (CTT54) to generate PSMA-targeted AuNPs. In vitro evaluations of these targeted AuNPs were conducted to determine PSMA-mediated and time-dependent binding to PSMA-positive LNCaP cells. The PSMA-targeted AuNPs exhibited significantly higher and selective binding to LNCaP cells compared to control non-targeted AuNPs, thus demonstrating the feasibility of this approach.


Asunto(s)
Sistemas de Liberación de Medicamentos , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Oro/química , Oro/uso terapéutico , Nanopartículas del Metal/química , Neoplasias de la Próstata/tratamiento farmacológico , Antígenos de Superficie/metabolismo , Proteínas Bacterianas/química , Biotina/análogos & derivados , Biotina/química , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/metabolismo , Oro/farmacología , Humanos , Masculino , Nanopartículas del Metal/uso terapéutico , Unión Proteica/efectos de los fármacos
20.
Bioconjug Chem ; 23(11): 2300-12, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23110503

RESUMEN

Engineering peptide-based targeting agents with residues for site-specific and stable complexation of radionuclides is a highly desirable strategy for producing diagnostic and therapeutic agents for cancer and other diseases. In this report, a model N-S-N(Py) ligand (3) and a cysteine-derived α-melanocyte stimulating hormone (α-MSH) peptide (6) were used as novel demonstrations of a widely applicable chelation strategy for incorporation of the [M(I)(CO)(3)](+) (M = Re, (99m)Tc) core into peptide-based molecules for radiopharmaceutical applications. The structural details of the core ligand-metal complexes as model systems were demonstrated by full chemical characterization of fac-[Re(I)(CO)(3)(N,S,N(Py)-3)](+) (4) and comparative high-performance liquid chromatography (HPLC) analysis between 4 and [(99m)Tc(I)(CO)(3)(N,S,N(Py)-3)](+) (4a). The α-MSH analogue bearing the N-S-N(Py) chelate on a modified cysteine residue (6) was generated and complexed with [M(I)(CO)(3)](+) to confirm the chelation strategy's utility when applied in a peptide-based targeting agent. Characterization of the Re(I)(CO)(3)-6 peptide conjugate (7) confirmed the efficient incorporation of the metal center, and the (99m)Tc(I)(CO)(3)-6 analogue (7a) was explored as a potential single photon emission computed tomography (SPECT) compound for imaging the melanocortin 1 receptor (MC1R) in melanoma. Peptide 7a showed excellent radiolabeling yields and in vitro stability during amino acid challenge and serum stability assays. In vitro B16F10 melanoma cell uptake of 7a reached a modest value of 2.3 ± 0.08% of applied activity at 2 h at 37 °C, while this uptake was significantly reduced by coincubation with a nonlabeled α-MSH analogue, NAPamide (3.2 µM) (P < 0.05). In vivo SPECT/X-ray computed tomography (SPECT/CT) imaging and biodistribution of 7a were evaluated in a B16F10 melanoma xenografted mouse model. SPECT/CT imaging clearly visualized the tumor at 1 h post injection (p.i.) with high tumor-to-background contrast. Blocking studies with coinjected NAPamide (10 mg per kg of mouse body weight) confirmed the in vivo specificity of 7a for MC1R-positive tumors. Biodistribution results with 7a yielded a moderate tumor uptake of 1.20 ± 0.09 percentage of the injected radioactive dose per gram of tissue (% ID/g) at 1 h p.i. Relatively high uptake of 7a was also seen in the kidneys and liver at 1 h p.i. (6.55 ± 0.36% ID/g and 4.44 ± 0.17% ID/g, respectively), although reduced kidney uptake was seen at 4 h p.i. (3.20 ± 0.48% ID/g). These results demonstrate the utility of the novel [M(I)(CO)(3)](+) chelation strategy when applied in a targeting peptide.


Asunto(s)
Quelantes/farmacocinética , Cisteína/química , Melanoma Experimental/diagnóstico , Compuestos Organometálicos/farmacocinética , Péptidos/farmacocinética , Radiofármacos/farmacocinética , alfa-MSH/farmacocinética , Animales , Quelantes/química , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química , Péptidos/química , Radiofármacos/química , Renio/química , Tecnecio/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Células Tumorales Cultivadas , alfa-MSH/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA