Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Appl Phys A Mater Sci Process ; 128(10): 866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36101661

RESUMEN

In this work, a shock-free argon-fed plasma plume was generated by a variable-frequency power supply and the discharge characteristics were investigated from the voltage and current waveforms between 72 and 92 kHz frequencies. The higher electron temperature dominates the plasma chemical process and the average plasma temperature is about 30 â„ƒ under these conditions. The influence of non-thermal atmospheric plasma plume length and plume temperature on Ar gas flow is optimized at 7 sL/min. The average charge accumulation on the plume tip area and the dependence of flow rate on the plasma irradiation area were also explored. This atmospheric pressure plasma jet (APPJ) has been proposed for human-skin irradiation on different areas (even on the tongue) owing to its less painful, tingling and burning effect. Optical emission spectroscopy (OES) confirmed the presence of excited argon with reactive nitrogen (RNS) and oxygen species (ROS). This study contributes to a better understanding of non-thermal plasma effects on the human body which may find prospects for disinfection and prevention of different diseases during the current pandemic time. Supplementary Information: The online version contains supplementary material available at 10.1007/s00339-022-06022-w.

2.
Rev Sci Instrum ; 85(2): 025107, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24593396

RESUMEN

We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (∼10(-6) mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA