RESUMEN
Owing to its mitogenic and angiogenic characteristics, the use of basic fibroblast growth factor (bFGF) to promote wound healing has been investigated. However, its clinical efficacy has fallen short of expectations due to its instability. Heparin has been reported to stabilize bFGF. Therefore, we hypothesized that the combination of these agents would more effectively promote wound healing than bFGF alone; a single-center, two-arm parallel, single-blind, and a prospective randomized controlled pilot study was therefore performed involving 12 patients who underwent split-thickness skin graft harvesting. To ensure a feasible clinical treatment model, commercially available agents were used. The patients were randomly assigned to either the control group treated with bFGF (n = 6) or the intervention group treated with bFGF and heparin (n = 6) in a 1:1 ratio. The wound area and the wound area variation was assessed each week postoperatively, as was the number of days required for epithelialization. As a supplementary analysis, the least-squares means were calculated using a linear mixed-effects model. The results of this study indicate that the combination of bFGF and heparin may more effectively promote wound healing than bFGF alone, consistent with our hypothesis. A multicenter trial based on these data is ongoing.
RESUMEN
While fatty acid oxidation (FAO) in mitochondria is a primary energy source for quiescent lymphocytes, the impact of promoting FAO in activated lymphocytes undergoing metabolic reprogramming remains unclear. Here, we demonstrate that pemafibrate, a selective PPARα modulator used clinically for the treatment of hypertriglyceridemia, transforms metabolic system of T-cells and alleviates several autoimmune diseases. Pemafibrate suppresses Th17 cells but not Th1 cells, through the inhibition of glutaminolysis and glycolysis initiated by enhanced FAO. In contrast, a conventional PPARα agonist fenofibrate significantly inhibits cell growth by restraining overall metabolisms even at a dose insufficient to induce fatty acid oxidation. Clinically, patients receiving pemafibrate showed a significant decrease of Th17/Treg ratio in peripheral blood. Our results suggest that augmented FAO by pemafibrate-mediated selective activation of PPARα restrains metabolic programs of Th17 cells and could be a viable option for the treatment of autoimmune diseases.
RESUMEN
Increased dietary phosphate consumption intensifies renal phosphate burden. Several mechanisms for phosphate-induced renal tubulointerstitial fibrosis have been reported. Considering the dual nature of phosphate as both a potential renal toxin and an essential nutrient for the body, kidneys may possess inherent protective mechanisms against phosphate overload, rather than succumbing solely to injury. However, there is limited understanding of such mechanisms. To identify these mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) analysis of the kidneys of control and dietary phosphate-loaded (Phos) mice at a time point when the Phos group had not yet developed tubulointerstitial fibrosis. scRNA-seq analysis identified the highest number of differentially expressed genes in the clusters belonging to proximal tubular epithelial cells (PTECs). Based on these differentially expressed genes, in silico analyses suggested that the Phos group activated peroxisome proliferator-activated receptor-α (PPAR-α) and fatty acid ß-oxidation (FAO) in the PTECs. This activation was further substantiated through various experiments, including the use of an FAO activity visualization probe. Compared with wild-type mice, Ppara knockout mice exhibited exacerbated tubulointerstitial fibrosis in response to phosphate overload. Experiments conducted with cultured PTECs demonstrated that activation of the PPAR-α/FAO pathway leads to improved cellular viability under high-phosphate conditions. The Phos group mice showed a decreased serum concentration of free fatty acids, which are endogenous PPAR-α agonists. Instead, experiments using cultured PTECs revealed that phosphate directly activates the PPAR-α/FAO pathway. These findings indicate that noncanonical metabolic reprogramming via endogenous activation of the PPAR-α/FAO pathway in PTECs is essential to counteract phosphate toxicity.NEW & NOTEWORTHY This study revealed the activation of peroxisome proliferator-activated receptor-α and fatty acid ß-oxidation in proximal tubular epithelial cells as an endogenous mechanism to protect the kidney from phosphate toxicity. These findings highlight noncanonical metabolic reprogramming as a potential target for suppressing phosphate toxicity in the kidneys.
Asunto(s)
Túbulos Renales Proximales , PPAR alfa , Fosfatos , Animales , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/efectos de los fármacos , PPAR alfa/metabolismo , PPAR alfa/genética , Fosfatos/metabolismo , Fosfatos/toxicidad , Fibrosis , Ratones Endogámicos C57BL , Masculino , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Ácidos Grasos/metabolismo , Ratones Noqueados , Oxidación-ReducciónRESUMEN
BRAF V600E, one of the most frequent mutations in the MAPK pathway, confers poor prognosis to colorectal cancers (CRCs), partly because of chemotherapeutic resistance. Oncogene-induced DNA damage responses (DDRs) that primarily activate p53 are important mechanistic barriers to the malignant transformation of cells; however, the mechanism underlying this impairment in cancer remains unknown. Here, we evaluated the responses of BRAFV600E-induced DDRs in two CRC cell lines, SW48 and LIM1215, both of which harbor wild-type TP53, KRAS, and BRAF. BRAFV600E transduction exhibited distinct phenotypes in these cells: SW48 cell proliferation markedly decreased, whereas that of LIM1215 increased. BRAFV600E expression induced the activation of oncogene-induced DDR signaling in SW48 cells, but not in LIM1215 cells, whereas chemotherapeutic agents similarly activated DDRs in both cell lines. Knockdown experiments revealed that these responses in SW48 cells were mediated by p53-p21 pathway activation. Comet assay (both alkaline and neutral) revealed that BRAFV600E increased single-strand breaks to the same extent in both cell lines; however, in case of LIM1215 cells, it only facilitated double-strand breaks. Furthermore, the proliferation of LIM1215 cells, wherein no oncogene-induced DDRs occurred, was synergistically inhibited upon MDM2 inhibitor-mediated p53 activation combined with MEK inhibition. Taken together, these distinct DDR signaling responses highlight the novel characteristics of BRAFV600E-mutated CRC cells and define the therapeutic potential of p53 activation combined with MAPK inhibition against TP53 wild-type CRC harboring a BRAFV600E mutation.
RESUMEN
Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.
Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Hexoquinasa , Hexoquinasa/genética , Hexoquinasa/metabolismo , Estudios Prospectivos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Mitocondrias/metabolismo , Lisosomas/metabolismo , Proteínas Quinasas/metabolismo , Senescencia Celular/genética , Homeostasis , Autofagia/genéticaRESUMEN
Cardiac sarcoidosis (CS) is the scarring of heart muscles by autoimmunity, leading to heart abnormalities and patients with sarcoidosis with cardiac involvements have poor prognoses. Due to the small number of patients, it is difficult to stratify all patients of CS by human leukocyte antigen (HLA) analysis. We focused on the structure of antigen-recognizing pockets in heterodimeric HLA-class II, in addition to DNA sequences, and extracted high-affinity combinations of antigenic epitopes from candidate autoantigen proteins and HLA. Four HLA heterodimer-haplotypes (DQA1*05:03/05:05/05:06/05:08-DQB1*03:01) were identified in 10 of 68 cases. Nine of the 10 patients had low left ventricular ejection fraction (< 50%). Fourteen amino-acid sequences constituting four HLA anchor pockets encoded by the HLA haplotypes were all common, suggesting DQA1*05:0X-DQB1*03:01 exhibit one group of heterodimeric haplotypes. The heterodimeric haplotypes recognized eight epitopes from different proteins. Assuming that autoimmune mechanisms might be activated by molecular mimicry, we searched for bacterial species having peptide sequences homologous to the eight epitopes. Within the peptide epitopes form the SLC25A4 and DSG2, high-homology sequences were found in Cutibacterium acnes and Mycobacterium tuberculosis, respectively. In this study, we detected the risk heterodimeric haplotypes of ventricular dysfunction in CS by searching for high-affinity HLA-class II and antigenic epitopes from candidate cardiac proteins.
Asunto(s)
Sarcoidosis , Disfunción Ventricular Izquierda , Humanos , Haplotipos , Volumen Sistólico , Cadenas alfa de HLA-DQ/genética , Cadenas beta de HLA-DQ/genética , Función Ventricular Izquierda , Antígenos HLA-DQ/genética , Antígenos de Histocompatibilidad Clase I/genética , Sarcoidosis/genética , Epítopos , Disfunción Ventricular Izquierda/genética , Péptidos/genética , Cadenas HLA-DRB1/genética , Frecuencia de los Genes , Alelos , Predisposición Genética a la EnfermedadRESUMEN
BACKGROUND: Cardiac-specific myosin light chain kinase (cMLCK), encoded by MYLK3, regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure. METHODS: We generated the knock-in mice (Mylk3+/fs and Mylk3fs/fs) with a familial dilated cardiomyopathy-associated MYLK3 frameshift mutation (MYLK3+/fs) that had been identified previously by us (c.1951-1G>T; p.P639Vfs*15) and the human induced pluripotent stem cell-derived cardiomyocytes from the carrier of the mutation. We also developed a new small-molecule activator of cMLCK (LEUO-1154). RESULTS: Both mice (Mylk3+/fs and Mylk3fs/fs) showed reduced cMLCK expression due to nonsense-mediated messenger RNA decay, reduced MLC2v (ventricular myosin regulatory light chain) phosphorylation in the myocardium, and systolic dysfunction in a cMLCK dose-dependent manner. Consistent with this result, myocardium from the mutant mice showed an increased ratio of cardiac superrelaxation/disordered relaxation states that may contribute to impaired cardiac contractility. The phenotypes observed in the knock-in mice were rescued by cMLCK replenishment through the AAV9_MYLK3 vector. Human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation reduced cMLCK expression by 50% and contractile dysfunction, accompanied by an increased superrelaxation/disordered relaxation ratio. CRISPR-mediated gene correction, or cMLCK replenishment by AAV9_MYLK3 vector, successfully recovered cMLCK expression, the superrelaxation/disordered relaxation ratio, and contractile dysfunction. LEUO-1154 increased human cMLCK activity ≈2-fold in the Vmax for ventricular myosin regulatory light chain phosphorylation without affecting the Km. LEUO-1154 treatment of human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation restored the ventricular myosin regulatory light chain phosphorylation level and superrelaxation/disordered relaxation ratio and improved cardiac contractility without affecting calcium transients, indicating that the cMLCK activator acts as a myotrope. Finally, human myocardium from advanced heart failure with a wide variety of causes had a significantly lower MYLK3/PPP1R12B messenger RNA expression ratio than control hearts, suggesting an altered balance between myosin regulatory light chain kinase and phosphatase in the failing myocardium, irrespective of the causes. CONCLUSIONS: cMLCK dysregulation contributes to the development of cardiac systolic dysfunction in humans. Our strategy to restore cMLCK activity could form the basis of a novel myotropic therapy for advanced systolic heart failure.
Asunto(s)
Insuficiencia Cardíaca Sistólica , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosforilación , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Contracción Miocárdica/fisiología , ARN Mensajero/genética , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismoRESUMEN
We herein report a rare case of a patient with hypopharyngeal squamous cell carcinoma (SCC) who presented with recurrent metastasis in the mesenteric lymph node of a transplanted jejunum. Removal of the metastatic lymph node required resection of the nutrient vessels which risked the current state of the transplanted jejunum. Importantly, although the nutrient vessels were resected, the jejunum did not become necrotic. This case and another similar case indicate that it may be possible to predict the viability of a transplanted jejunum where jejunal nutrient vessels must subsequently be resected. Key indicators for jejunal survival include determining jejunal blood flow by intraoperative indocyanine green fluorescence imaging, confirming good jejunal color and observation of peristaltic movement by intraoperative blood flow blockage of nutrient vessels. In conclusion, if intraoperative indocyanine green fluorescence imaging in the entire jejunum can be confirmed, there is a high possibility that the jejunum can be well preserved. The clinical presentation and clinical course are described with a proposed new schema of the resectable site of the transplanted jejunal mesentery.
Asunto(s)
Verde de Indocianina , Yeyuno , Humanos , Yeyuno/trasplante , Metástasis Linfática/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Monitoreo Intraoperatorio/métodos , Mesenterio/diagnóstico por imagen , Mesenterio/cirugíaRESUMEN
Perioperative blindness, especially posterior ischemic optic neuropathy (PION), is an uncommon but potentially devastating complication. We report a case of a 65-year-old male patient who underwent laryngopharyngectomy, bilateral neck dissection, and free jejunum flap reconstruction, but then experienced PION in his right eye following postoperative bleeding and bilateral internal jugular veins (IJVs) compression. Despite systemic corticosteroid therapy, his visual recovery prognosis was poor. The specific mechanism responsible for PION remains unclear, and no therapy has been shown to improve this condition. As such, prevention of perioperative PION remains the only available strategy. Surgeons should be aware of this rare potential complication and its risk factors and strive to avoid it. As postoperative bleeding and IJV compression are one of important risk factors for PION, avoiding these are critical.
Asunto(s)
Neuropatía Óptica Isquémica , Masculino , Humanos , Anciano , Neuropatía Óptica Isquémica/etiología , Venas Yugulares , Hemorragia Posoperatoria/etiología , Disección del Cuello/efectos adversos , Pronóstico , Complicaciones Posoperatorias/etiologíaRESUMEN
Antimicrobial resistance (AMR) is a global health problem. Despite the enormous efforts made in the last decade, threats from some species, including drug-resistant Neisseria gonorrhoeae, continue to rise and would become untreatable. The development of antibiotics with a different mechanism of action is seriously required. Here, we identified an allosteric inhibitory site buried inside eukaryotic mitochondrial heme-copper oxidases (HCOs), the essential respiratory enzymes for life. The steric conformation around the binding pocket of HCOs is highly conserved among bacteria and eukaryotes, yet the latter has an extra helix. This structural difference in the conserved allostery enabled us to rationally identify bacterial HCO-specific inhibitors: an antibiotic compound against ceftriaxone-resistant Neisseria gonorrhoeae. Molecular dynamics combined with resonance Raman spectroscopy and stopped-flow spectroscopy revealed an allosteric obstruction in the substrate accessing channel as a mechanism of inhibition. Our approach opens fresh avenues in modulating protein functions and broadens our options to overcome AMR.
Asunto(s)
Antibacterianos , Hemo , Antibacterianos/farmacologíaRESUMEN
Signet-ring cell/histiocytoid carcinoma (SRCHC) is a rare, aggressive neoplasm that often originates in the eyelid. We present a rare case of a 64-year-old male with SRCHC and papillary thyroid carcinoma (PTC) that underwent exome panel sequencing with next-generation sequencing (NGS). In addition, we reviewed reports of genetic mutations in SRCHC and compared them with our results. The imaging findings allowed us to recognize the differences in pathology between the left and right cervical nodes. For first-line treatment, an extended total maxillectomy with orbital exenteration and dissection of the left neck was performed. Two months later, total thyroidectomy and right neck dissection were performed. Two years after surgery, multiple bone metastases occurred. An exome panel sequence with NGS was used to determine the chemotherapy regimen. Notably, somatic mutations in cadherin 1 (CDH1), human epidermal growth factor receptor 2 (ERBB2), neurofibromin 1 (NF1), and tumor protein p53 (TP53) were detected. These mutations are rarely detected in PTC; therefore, cervical metastases are assumed to originate from SRCHC. To our knowledge, there have been no reports of simultaneous cancer of SRCHC and PTC. Somatic mutations in CDH1, ERBB2, NF1, and TP53 were detected in the exome panel sequence of the metastatic lymph nodes of SRCHC and correlated with previous reports of SRCHC.
RESUMEN
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that shows progressive muscle weakness. A few treatments exist including symptomatic therapies, which can prolong survival or reduce a symptom; however, no fundamental therapies have been found. As a therapeutic strategy, enhancing muscle force is important for patients' quality of life. In this study, we focused on skeletal muscle-specific myosin regulatory light chain kinase (skMLCK), which potentially enhances muscle contraction, as overexpression of skMLCK was thought to improve muscle function. The adeno-associated virus serotype 6 encoding skMLCK (AAV6/skMLCK) and eGFP (control) was produced and injected intramuscularly into the lower limbs of SOD1G37R mice, which are a familial ALS model. AAV6/skMLCK showed the successful expression of skMLCK in the muscle tissues. Although the control did not affect the muscle force in both of the WT and SOD1G37R mice, AAV6/skMLCK enhanced the twitch force of SOD1G37R mice and the tetanic force of WT and SOD1G37R mice. These results indicate that overexpression of skMLCK can enhance the tetanic force of healthy muscle as well as rescue weakened muscle function. In conclusion, the gene transfer of skMLCK has the potential to be a new therapy for ALS as well as for other neuromuscular diseases.
Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Dependovirus/metabolismo , Técnicas de Transferencia de Gen , Músculo Esquelético/enzimología , Músculo Esquelético/fisiopatología , Quinasa de Cadena Ligera de Miosina/genética , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Inyecciones Intramusculares , Ratones Endogámicos C57BL , TetaniaRESUMEN
Dilated cardiomyopathy (DCM) is a major cause of heart failure, characterized by ventricular dilatation and systolic dysfunction. Familial DCM is reportedly caused by mutations in more than 50 genes, requiring precise disease stratification based on genetic information. However, the underlying genetic causes of 60 to 80% of familial DCM cases remain unknown. Here, we identified that homozygous truncating mutations in the gene encoding Bcl-2associated athanogene (BAG) co-chaperone 5 (BAG5) caused inherited DCM in five patients among four unrelated families with complete penetrance. BAG5 acts as a nucleotide exchange factor for heat shock cognate 71 kDa protein (HSC70), promoting adenosine diphosphate release and activating HSC70-mediated protein folding. Bag5 mutant knock-in mice exhibited ventricular dilatation, arrhythmogenicity, and poor prognosis under catecholamine stimulation, recapitulating the human DCM phenotype, and administration of an adeno-associated virus 9 vector carrying the wild-type BAG5 gene could fully ameliorate these DCM phenotypes. Immunocytochemical analysis revealed that BAG5 localized to junctional membrane complexes (JMCs), critical microdomains for calcium handling. Bag5-mutant mouse cardiomyocytes exhibited decreased abundance of functional JMC proteins under catecholamine stimulation, disrupted JMC structure, and calcium handling abnormalities. We also identified heterozygous truncating mutations in three patients with tachycardia-induced cardiomyopathy, a reversible DCM subtype associated with abnormal calcium homeostasis. Our study suggests that loss-of-function mutations in BAG5 can cause DCM, that BAG5 may be a target for genetic testing in cases of DCM, and that gene therapy may potentially be a treatment for this disease.
Asunto(s)
Cardiomiopatía Dilatada , Trasplante de Corazón , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Humanos , Ratones , Mutación/genética , Miocitos Cardíacos/metabolismo , FenotipoRESUMEN
BACKGROUND: The development of esophago-bronchial fistula after esophagectomy and reconstruction using a posterior mediastinal gastric tube remains a rare complication associated with a high rate of mortality. CASE PRESENTATION: A 63-year-old man with esophageal cancer underwent a thoracoscopic esophagectomy with two-field lymph node dissection and reconstruction via a gastric tube through the posterior mediastinal route. Postoperatively, the patient developed extensive pyothorax in the right lung due to port site bleeding and hematoma infection. Four months after surgery, he developed an esophago-left bronchial fistula due to ischemia of the cervical esophagus and severe reflux esophagitis at the site of the anastomosis. Because of respiratory failure due to the esophago-bronchial fistula and the history of extensive right pyothorax, right thoracotomy and left one-lung ventilation were thought to be impossible, so we decided to perform the surgery in three-step systematically. First, we inserted a decompression catheter and feeding tube into the gastric tube as a gastrostomy and expected neovascularization to develop from the wall of the gastric tube through the anastomosis after this procedure. Second, 14 months after esophagectomy, we constructed an esophagostomy after confirming blood flow in the distal side of the cervical esophagus via gastric tube using intraoperative indocyanine green-guided blood flow evaluation. In the final step, we closed the esophagostomy and performed a cervical esophago-jejunal anastomosis to restore esophageal continuity using a pedicle jejunum in a Roux-en-Y anastomosis via a subcutaneous route. CONCLUSION: This three-step operation can be an effective procedure for patients with esophago-left bronchial fistula after esophagectomy, especially those with respiratory failure and difficulty in undergoing right thoracotomy with left one-lung ventilation.
Asunto(s)
Fístula Bronquial , Neoplasias Esofágicas , Insuficiencia Respiratoria , Fístula Bronquial/etiología , Fístula Bronquial/cirugía , Neoplasias Esofágicas/cirugía , Esofagectomía/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Respiratoria/etiologíaRESUMEN
Arrhythmogenic cardiomyopathy (ACM) caused by TMEM43 p.S358L is a fully penetrant heart disease that results in impaired cardiac function or fatal arrhythmia. However, the molecular mechanism of ACM caused by the TMEM43 variant has not yet been fully elucidated. In this study, we generated knock-in (KI) rats harboring a Tmem43 p.S358L mutation and established induced pluripotent stem cells (iPSCs) from patients based on the identification of TMEM43 p.S358L variant from a family with ACM. The Tmem43-S358L KI rats exhibited ventricular arrhythmia and fibrotic myocardial replacement in the subepicardium, which recapitulated the human ACM phenotype. The four-transmembrane protein TMEM43 with the p.S358L variant (TMEM43S358L ) was found to be modified by N-linked glycosylation in both KI rat cardiomyocytes and patient-specific iPSC-derived cardiomyocytes. TMEM43S358L glycosylation increased under the conditions of enhanced endoplasmic reticulum (ER) stress caused by pharmacological stimulation or age-dependent decline of the ER function. Intriguingly, the specific glycosylation of TMEM43S358L resulted from the altered membrane topology of TMEM43. Moreover, unlike TMEM43WT , which is mainly localized to the ER, TMEM43S358L accumulated at the nuclear envelope of cardiomyocytes with the increase in glycosylation. Finally, our comprehensive transcriptomic analysis demonstrated that the regional differences in gene expression patterns between the inner and outer layers observed in the wild type myocardium were partially diminished in the KI myocardium prior to exhibiting histological changes indicative of ACM. Altogether, these findings suggest that the aberrant accumulation of TMEM43S358L underlies the pathogenesis of ACM caused by TMEM43 p.S358L variant by affecting the transmural gene expression within the myocardium.
Asunto(s)
Cardiomiopatías , Proteínas de la Membrana/fisiología , Miocardio/metabolismo , Adulto , Anciano , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Células Cultivadas , Femenino , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mutación , Miocitos Cardíacos , RatasRESUMEN
The organ of Corti is an auditory organ located in the cochlea, comprising hair cells (HCs) and other supporting cells. Cellular shape changes of HCs are important for the development of auditory epithelia and hearing function. It was previously observed that HCs and inner sulcus cells (ISCs) demonstrate cellular shape changes similar to the apical constriction of the neural epithelia. Apical constriction is induced via actomyosin cable contraction in the apical junctional complex and necessary for the physiological function of the epithelium. Actomyosin cable contraction is mainly regulated by myosin regulatory light chain (MRLC) phosphorylation by myosin light chain kinase (MLCK). However, MRLC and MLCK isoforms expressed in HCs and ISCs are unknown. Hence, we investigated the expression patterns and roles of MRLCs and MLCKs in HCs. Droplet digital PCR revealed that HCs expressed MYL12A/B and MYL9, which are non-muscle MRLC and smooth muscle MLCK (smMLCK), respectively. Immunofluorescence staining throughout the organ of Corti demonstrated that only MYL12 was expressed in the apical portion of HCs, whereas MYL12 and MYL9 were expressed on ISCs. In addition, purified MYL12B was phosphorylated by smMLCK in vitro, and the harvested HCs contained phosphorylated MYL12. Furthermore, accompanied by the expansion of the cell area of outer HCs, MYL12 phosphorylation was reduced by ML-7, which is an inhibitor of smMLCK. In conclusion, MYL12 phosphorylation by smMLCK contributed to the apical constriction-like cellular shape change of HCs possibly relating to the development of auditory epithelia and hearing function.
Asunto(s)
Actomiosina , Cóclea , Células Ciliadas Auditivas , Quinasa de Cadena Ligera de Miosina/metabolismo , Animales , Fosforilación , Reacción en Cadena de la Polimerasa , Ratas WistarRESUMEN
Enhancers regulate gene expressions in a tissue- and pathology-specific manner by altering its activities. Plasma levels of atrial and brain natriuretic peptides, encoded by the Nppa and Nppb, respectively, and synthesized predominantly in cardiomyocytes, vary depending on the severity of heart failure. We previously identified the noncoding conserved region 9 (CR9) element as a putative Nppb enhancer at 22-kb upstream from the Nppb gene. However, its regulatory mechanism remains unknown. Here, we therefore investigated the mechanism of CR9 activation in cardiomyocytes using different kinds of drugs that induce either cardiac hypertrophy or cardiac failure accompanied by natriuretic peptides upregulation. Chronic treatment of mice with either catecholamines or doxorubicin increased CR9 activity during the progression of cardiac hypertrophy to failure, which is accompanied by proportional increases in Nppb expression. Conversely, for cultured cardiomyocytes, doxorubicin decreased CR9 activity and Nppb expression, while catecholamines increased both. However, exposing cultured cardiomyocytes to mechanical loads, such as mechanical stretch or hydrostatic pressure, upregulate CR9 activity and Nppb expression even in the presence of doxorubicin. Furthermore, the enhancement of CR9 activity and Nppa and Nppb expressions by either catecholamines or mechanical loads can be blunted by suppressing mechanosensing and mechanotransduction pathways, such as muscle LIM protein (MLP) or myosin tension. Finally, the CR9 element showed a more robust and cell-specific response to mechanical loads than the -520-bp BNP promoter. We concluded that the CR9 element is a novel enhancer that responds to mechanical loads by upregulating natriuretic peptides expression in cardiomyocytes.
Asunto(s)
Expresión Génica/fisiología , Mecanotransducción Celular/fisiología , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/metabolismo , Animales , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Proteínas con Dominio LIM , Ratones Transgénicos , Proteínas Musculares , Péptido Natriurético Encefálico/genética , Péptidos Natriuréticos/genética , Péptidos Natriuréticos/metabolismo , Ratas , Activación Transcripcional/genética , Activación Transcripcional/fisiologíaRESUMEN
AMP-activated protein kinase (AMPK) is a multifunctional kinase that regulates microtubule (MT) dynamic instability through CLIP-170 phosphorylation; however, its physiological relevance in vivo remains to be elucidated. In this study, we identified an active form of AMPK localized at the intercalated disks in the heart, a specific cell-cell junction present between cardiomyocytes. A contractile inhibitor, MYK-461, prevented the localization of AMPK at the intercalated disks, and the effect was reversed by the removal of MYK-461, suggesting that the localization of AMPK is regulated by mechanical stress. Time-lapse imaging analysis revealed that the inhibition of CLIP-170 Ser-311 phosphorylation by AMPK leads to the accumulation of MTs at the intercalated disks. Interestingly, MYK-461 increased the individual cell area of cardiomyocytes in CLIP-170 phosphorylation-dependent manner. Moreover, heart-specific CLIP-170 S311A transgenic mice demonstrated elongation of cardiomyocytes along with accumulated MTs, leading to progressive decline in cardiac contraction. In conclusion, these findings suggest that AMPK regulates the cell shape and aspect ratio of cardiomyocytes by modulating the turnover of MTs through homeostatic phosphorylation of CLIP-170 at the intercalated disks.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Miocitos Cardíacos , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Forma de la Célula , Ratones , Proteínas Asociadas a Microtúbulos , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Neoplasias , FosforilaciónRESUMEN
Cardiac-specific myosin regulatory light chain kinase (cMLCK) regulates cardiac sarcomere structure and contractility by phosphorylating the ventricular isoform of the myosin regulatory light chain (MLC2v). MLC2v phosphorylation levels are significantly reduced in failing hearts, indicating the clinical importance of assessing the activity of cMLCK and the phosphorylation level of MLC2v to elucidate the pathogenesis of heart failure. This paper describes nonradioactive methods to assess both the activity of cMLCK and MLC2v phosphorylation levels. In vitro kinase reactions are performed using recombinant cMLCK with recombinant calmodulin and MLC2v in the presence of ATP and calcium at 25 °C, which are followed by either a bioluminescent ADP detection assay or a phosphate-affinity SDS-PAGE. In the representative study, the bioluminescent ADP detection assay showed a strict linear increase of the signal at cMLCK concentrations between 1.25 nM to 25 nM. Phosphate-affinity SDS-PAGE also showed a linear increase of phosphorylated MLC2v in the same cMLCK concentration range. Next, the time-dependency of the reactions was examined at the concentration of 5 nM cMLCK. A bioluminescent ADP detection assay showed a linear increase in the signal during 90 min of the reaction. Similarly, phosphate-affinity SDS-PAGE showed a time-dependent increase of phosphorylated MLC2v. The biochemical parameters of cMLCK for MLC2v were determined by a Michaelis-Menten plot using the bioluminescent ADP detection assay. The Vmax was 1.65 ± 0.10 mol/min/mol kinase and the average Km was around 0.5 USA µM at 25 °C. Next, the activity of wild type and the dilated cardiomyopathy-associated p.Pro639Valfs*15 mutant cMLCK were measured. The bioluminescent ADP detection assay and phosphate-affinity SDS-PAGE correctly detected defects in cMLCK activity and MLC2v phosphorylation, respectively. In conclusion, a combination of the bioluminescent ADP detection assay and the phosphate-affinity SDS-PAGE is a simple, accurate, safe, low-cost, and flexible method to measure cMLCK activity and the phosphorylation level of MLC2v.