Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Front Neural Circuits ; 18: 1358570, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715983

RESUMEN

A morphologically present but non-functioning synapse is termed a silent synapse. Silent synapses are categorized into "postsynaptically silent synapses," where AMPA receptors are either absent or non-functional, and "presynaptically silent synapses," where neurotransmitters cannot be released from nerve terminals. The presence of presynaptically silent synapses remains enigmatic, and their physiological significance is highly intriguing. In this study, we examined the distribution and developmental changes of presynaptically active and silent synapses in individual neurons. Our findings show a gradual increase in the number of excitatory synapses, along with a corresponding decrease in the percentage of presynaptically silent synapses during neuronal development. To pinpoint the distribution of presynaptically active and silent synapses, i.e., their positional information, we employed Sholl analysis. Our results indicate that the distribution of presynaptically silent synapses within a single neuron does not exhibit a distinct pattern during synapse development in different distance from the cell body. However, irrespective of neuronal development, the proportion of presynaptically silent synapses tends to rise as the projection site moves farther from the cell body, suggesting that synapses near the cell body may exhibit higher synaptic transmission efficiency. This study represents the first observation of changes in the distribution of presynaptically active and silent synapses within a single neuron.


Asunto(s)
Hipocampo , Neuronas , Sinapsis , Animales , Hipocampo/citología , Hipocampo/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Células Cultivadas , Terminales Presinápticos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Ratas , Transmisión Sináptica/fisiología
2.
J Nat Med ; 78(1): 246-254, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010476

RESUMEN

The Japanese herbal medicine kamikihito (KKT) is widely used for insomnia, anorexia, anemia, and depression. Recently, the efficacy of KKT against Alzheimer's disease (AD) has been demonstrated in clinical and non-clinical studies. To address the mechanism underlying the effect of KKT on AD, we examined the effects of KKT in ß-amyloid (Aß)25-35-exposed primary cultured neurons. The effects of KKT on Aß25-35-induced neurotoxicity were assessed by immunocytochemical assays and Sholl analysis of neurites, and the influence of KKT on neurotrophic factor (NF) gene expression was examined using RT-PCR analysis. As a result, Aß25-35 exposure attenuated the arborization of neurites of single cultured hippocampal neurons, and KKT treatment for 3 days ameliorated the Aß25-35-induced impairment of tau-positive axon outgrowth. This ameliorative effect of KKT was largely abolished by the Trk inhibitor K252a, and expression of NFs, nerve growth factor (Ngf), brain-derived neurotrophic factor (Bdnf), neurotrophin-3 (NT-3) was significantly increased by KKT. These results indicate that KKT ameliorates axonal atrophy via NFs signaling, providing a mechanistic basis for treatment of AD with KKT.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Humanos , Axones/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Neuronas , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico
3.
Artículo en Inglés | MEDLINE | ID: mdl-37808130

RESUMEN

Ninjinyoeito (NYT), a traditional Japanese medicine, is effective for improving physical strength and treating fatigue and anorexia. Recently, a clinical report revealed that NYT ameliorates cognitive dysfunction in Alzheimer's disease (AD) patients, although the mechanisms remain unclear. AD is a neurodegenerative disorder accompanied by a progressive deficit in memory. Current therapeutic agents are largely ineffective in treating cognitive dysfunction in AD patients. In this study, we investigated the effects of NYT on spatial memory impairment in a rat model of dementia. Rats were prepared with transient cerebral ischemia and intraventricular injection of ß-amyloid1-42 for 7 days (CI + Aß). NYT was orally administered for 7 days after cerebral ischemia. We evaluated spatial memory using the Morris water maze and investigated the expression of α-amino-3-hydroxy-5-4-isoxazole propionic acid receptor subunits, the phosphorylation level of glutamate receptor A (GluA)1 at serine sites S831 and S845, and the Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the hippocampus and prefrontal cortex of CI + Aß rats. In the CI + Aß rats, NYT treatment shortened the extended time to reach the platform. However, NYT did not restore the decrease in the hippocampal GluA1, GluA2, or CaMKII expression but increased prefrontal cortical phosphorylation levels of S845-GluA1 and CaMKII. Therefore, NYT may alleviate spatial memory impairment by promoting glutamatergic transmission involved in the phosphorylation of S845-GluA1 and CaMKII in the prefrontal cortex of CI + Aß rats. Our results suggest that NYT is a valuable treatment for AD patients.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37593014

RESUMEN

Late-life depression is a globally prevalent disorder. Ninjinyoeito (NYT), a traditional Japanese herbal medicine, attenuates depressive symptoms in older patients. However, the mechanisms underlying the antidepressive effect of NYT are unknown. In this study, we investigated the mechanism of the action of NYT using senescence-accelerated mouse prone 8 (SAMP8) mice, which exhibit accelerated aging. SAMP8 mice were treated with NYT starting at 12 weeks of age. Twelve-week-old SAMP8 mice did not show prolonged immobility time in the tail suspension test compared with age-matched SAMR1 mice (normal aging control). At 34 weeks of age, vehicle-treated SAMP8 mice displayed prolonged immobility time compared with SAMR1 mice. NYT-treated SAMP8 mice showed a shorter immobility time than that of vehicle-treated SAMP8 mice. Notably, NYT decreased hippocampal inducible nitric oxide synthase (iNOS) expression in SAMP8 mice. There was no difference in iNOS expression between SAMR1 and vehicle-treated SAMP8 mice. Subchronic (5 days) administration of an iNOS inhibitor, 1400 W, shortened the immobility time in SAMP8 mice. These results suggest that NYT prevents an increase in immobility time of SAMP8 mice by decreasing iNOS levels in the hippocampus. Therefore, the antidepressive effect of NYT in older patients might be mediated, at least in part, by the downregulation of iNOS in the brain. Our data suggest that NYT is useful to prevent the onset of depression with aging.

5.
J Pharmacol Exp Ther ; 386(3): 331-343, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37391223

RESUMEN

The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd2+, extracellular Ca2+, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS). Moreover, Xe inhibited evoked glycinergic transmission, which was canceled by KT5720. Like glycinergic transmission, spontaneous and evoked glutamatergic transmissions were also inhibited by Xe in a KT5720-sensitive manner. Our results suggest that Xe decreases glycinergic and glutamatergic spontaneous and evoked transmissions at the presynaptic level in a PKA-dependent manner. These presynaptic responses are independent of Ca2+ dynamics. We conclude that PKA can be the main molecular target of Xe in the inhibitory effects on both inhibitory and excitatory neurotransmitter release. SIGNIFICANCE STATEMENT: Spontaneous and evoked glycinergic and glutamatergic transmissions were investigated using the whole-cell patch clamp technique in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xenon (Xe) significantly inhibited glycinergic and glutamatergic transmission presynaptically. As a signaling mechanism, protein kinase A was responsible for the inhibitory effects of Xe on both glycine and glutamate release. These results may help understand how Xe modulates neurotransmitter release and exerts its excellent anesthetic properties.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Xenón , Ratas , Animales , Ratas Wistar , Xenón/farmacología , Xenón/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neuronas , Transmisión Sináptica , Terminales Presinápticos/metabolismo , Hipocampo/metabolismo , Médula Espinal , Neurotransmisores/metabolismo
6.
Biochem Biophys Res Commun ; 643: 169-174, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36610382

RESUMEN

Dravet syndrome (DS) is an infantile-onset epileptic encephalopathy. More than 80% of DS patients have a heterozygous mutation in SCN1A, which encodes a subunit of the voltage-gated sodium channel, Nav1.1, in neurons. The roles played by astrocytes, the most abundant glial cell type in the brain, have been investigated in the pathogenesis of epilepsy; however, the specific involvement of astrocytes in DS has not been clarified. In this study, we evaluated Ca2+ signaling in astrocytes using genetically modified mice that have a loss-of-function mutation in Scn1a. We found that the slope of spontaneous Ca2+ spiking was increased without a change in amplitude in Scn1a+/- astrocytes. In addition, ATP-induced transient Ca2+ influx and the slope of Ca2+ spiking were also increased in Scn1a+/- astrocytes. These data indicate that perturbed Ca2+ dynamics in astrocytes may be involved in the pathogenesis of DS.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Animales , Ratones , Astrocitos/metabolismo , Epilepsias Mioclónicas/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Neuronas/metabolismo , Señalización del Calcio
7.
Artículo en Inglés | MEDLINE | ID: mdl-36276857

RESUMEN

Kamishoyosan (KSS) is a traditional Japanese Kampo medicine that is prescribed for hormonal change-induced mood disorders including premenstrual syndrome (PMS). In clinical studies, KSS exhibited ameliorative effects on mood symptoms of PMS, such as anxiety and irritability. However, the mechanism underlying the beneficial effects of KSS is unclear. In the present study, we investigated the involvement of serotonergic machinery in the anxiolytic effects of KSS on hormonally-induced anxiety-like behavior in progesterone withdrawal (PWD) rats, which were used as a model of PMS. Female rats were injected with progesterone daily for 21 days. At 48 h after the final progesterone injection, anxiety-like behavior was evaluated using the elevated plus maze. KSS was administered orally to PWD rats 1 h prior to the test and significantly attenuated PWD-induced anxiety-like behavior. This ameliorative effect of KSS was reversed by WAY-100635, a serotonin (5-HT)1A receptor antagonist. The effect of KSS on serotonergic transmission in the prefrontal cortex of PWD rats was also evaluated using an in vivo microdialysis procedure. KSS significantly increased the extracellular 5-HT level in the prefrontal cortex of PWD rats. In conclusion, our results suggest that KSS alleviates PWD-induced anxiety-like behavior at least partly by activating 5-HT1A receptors and enhancing serotonergic transmission.

8.
iScience ; 25(8): 104762, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35942096

RESUMEN

Although astrocytes are involved in the pathogenesis of CNS diseases, how they induce synaptic abnormalities is unclear. Currently, in vitro pathological astrocyte cultures or animal models do not reproduce human disease phenotypes accurately. Induced pluripotent stem cells (iPSCs) are replacing animal models in pathological studies. We developed an autaptic culture (AC) system containing single neuron cultures grown on microislands of astrocytes. AC with human iPSC-derived astrocytes (HiA) was established. We evaluated the effect of astrocytes on the synaptic functions of human-derived neurons. We found a significantly higher Na+ current amplitude, membrane capacitance, and number of synapses, as well as longer dendrites, in HiAACs compared with neuron monocultures. Furthermore, HiAs were involved in the formation and maturation of functional synapses that exhibited excitatory postsynaptic currents. This system can facilitate the study of CNS diseases and advance the development of drugs targeting glial cells.

9.
J Tradit Complement Med ; 12(3): 243-249, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35493307

RESUMEN

Background and aim: Early-life stress is thought to affect aggressive behavior in humans and rodents. Laboratory experiments have demonstrated that Sansoninto (SST; suan zǎo rén tang), a traditional herbal medicine, attenuates stress-induced abnormal behavior in rodents. However, it is unknown whether SST attenuates stress-induced aggressive behavior. The current study examined the effects of SST on aggressive behavior of mice who suffered from social isolation (SI) stress in adolescence. Experimental procedure: Five-week old mice were socially isolated for 6 weeks, and SST administration was started at 4 weeks after starting SI. Aggressive behavior and locomotor activity were examined in SST-treated mice. The content of dopamine and its metabolites in the hypothalamus were examined using high-performance liquid chromatography analysis. Gene expression analyses of monoamine oxidase-B (MAO-B), catechol-O-methyltransferase (COMT), and tyrosine hydroxylase in the hypothalamus were performed using quantitative reverse transcription polymerase chain reaction. Results and conclusion: SST attenuated SI-induced aggressive behavior and increased levels of homovanillic acid, a metabolite of dopamine. However, SST did not affect dopamine levels. SI enhanced locomotion in a novel environment and increased COMT mRNA levels. In contrast, SST-treated mice showed no significant enhancement of locomotion. SST attenuated the increase in COMT mRNA levels. Given that the dopaminergic system has been implicated in aggressive behavior, these findings suggest that SST toned down dopaminergic signaling, resulting in amelioration of aggression. SST may be useful for treatment of aggressive behavior in patients with neurotic symptoms.

10.
Methods Mol Biol ; 2417: 45-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35099790

RESUMEN

Newly generated synaptic vesicles (SVs) are re-acidified by the activity of the vacuolar-type H+-ATPases. Since H+ gradient across SV membrane drives neurotransmitter uptake into SVs, precise measurements of steady-state vesicular pH and dynamics of re-acidification process will provide important information concerning the H+-driven neurotransmitter uptake. Indeed, we recently demonstrated distinct features of steady state and dynamics of vesicular pH between glutamatergic vesicles and GABAergic vesicles in cultured hippocampal neurons. In this article, we focus on an experimental protocol and setup required to determine steady-state luminal pH of SVs in living neurons. This protocol is composed of efficient expression of a pH-sensitive fluorescent protein in the lumen of SVs in cultured neurons, and recordings of its fluorescence changes under a conventional fluorescent microscope during local applications of acidic buffer and ionophores-containing solution at a given pH. The method described here can be easily applied for measuring luminal pH of different types of secretory organelles and other acidic organelles such as lysosomes and endosomes in cultured cell preparations.


Asunto(s)
Vesículas Sinápticas , ATPasas de Translocación de Protón Vacuolares , Células Cultivadas , Hipocampo/metabolismo , Concentración de Iones de Hidrógeno , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
11.
J Ethnopharmacol ; 281: 114585, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34464703

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sleep disorders are among the most common symptoms in both peri- and post-menopausal women. Kamishoyosan (KSS) is a Kampo medicine prescribed for the treatment of sleep disorders in menopausal women in Japan. However, its precise mechanism of action remains unclear. AIM OF THE STUDY: In the present study, we developed a new animal model of menopausal sleep disorders by inducing social isolation stress in ovariectomized mice. Using pentobarbital-induced sleeping time as an index, we aimed to investigate the effects of KSS and involvement of the benzodiazepine receptors. MATERIALS AND METHODS: Eight-week-old, female ddY mice were ovariectomized or subjected to a sham operation (control) and housed in social isolation or groups for 9 weeks. The animals were divided into four groups, group-housed sham-operated, isolated sham-operated, group-housed ovariectomized, and socially isolated ovariectomized. Pentobarbital (50 mg/kg) was administered intraperitoneally (i.p.). Sleeping time was considered the period between the loss of righting reflex and its return (up to 180 min). KSS was administered orally (p.o.) 60 min before the test. Diazepam and flumazenil were administered i.p. 30 and 45 min before the test, respectively. On the day after administration, the mice were euthanized, and their uteri were weighed. RESULTS: Socially isolated, ovariectomized mice had shorter sleeping times than mice in all other groups. In mice with intact ovaries, diazepam (1 mg/kg, i.p.) considerably prolonged the pentobarbital-induced sleeping time, but KSS (30-1000 mg/kg, p.o.) did not. However, KSS (100 mg/kg, p.o.) significantly prolonged the pentobarbital-induced sleeping time in socially isolated ovariectomized mice. The prolongation of sleeping time mediated by KSS was reversed by flumazenil (3 mg/kg, i.p.). CONCLUSIONS: KSS potentiated pentobarbital-induced sleep in socially isolated, ovariectomized mice, and the benzodiazepine receptors are possibly involved in its pharmacological mechanism. These findings suggest that KSS is beneficial for the treatment of menopausal sleep disorders.


Asunto(s)
Conducta Animal , Medicamentos Herbarios Chinos/farmacología , Pentobarbital/farmacología , Sueño/efectos de los fármacos , Aislamiento Social , Animales , Sinergismo Farmacológico , Medicamentos Herbarios Chinos/administración & dosificación , Femenino , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/farmacología , Ratones , Ovariectomía , Pentobarbital/administración & dosificación
12.
J Pharmacol Sci ; 147(1): 114-117, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34294361

RESUMEN

Oxaliplatin is a key drug used in the management of solid tumors, such as colorectal cancer; however, it causes peripheral neuropathy. In this study, we investigated the effect of ibudilast, a phosphodiesterase inhibitor, on oxaliplatin-induced mechanical allodynia and histological changes in rats. Ibudilast (7.5 mg/kg, i.p., 5 times per week) reduced mechanical allodynia and histological changes induced by oxaliplatin (4 mg/kg, i.p., twice a week). In contrast, ibudilast (0.01-10 µM) had no effect on oxaliplatin-induced tumor cytotoxicity in murine colon adenocarcinoma 26 cells. These findings suggest that ibudilast could be useful for preventing oxaliplatin-induced peripheral neuropathy in clinical settings.


Asunto(s)
Hiperalgesia/inducido químicamente , Hiperalgesia/prevención & control , Oxaliplatino/efectos adversos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/prevención & control , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Animales , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Hiperalgesia/patología , Masculino , Ratones , Oxaliplatino/uso terapéutico , Enfermedades del Sistema Nervioso Periférico/patología , Ratas Sprague-Dawley , Células Tumorales Cultivadas
13.
Biochem Biophys Res Commun ; 560: 146-151, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-33989906

RESUMEN

Adenosine triphosphate (ATP) is the most vital energy source produced mainly in the mitochondria. Age-related mitochondrial dysfunction is associated with brain diseases. Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for energy production in mitochondria. Here, we examined how the novel NAD+-assisting substance, 10-ethyl-3-methylpyrimido[4,5-b]quinoline-2,4(3H,10H)-dione (TND1128), modulates the morphological growth of cultured mouse hippocampal neurons. The morphological growth effect of TND1128 was also compared with that of ß-nicotinamide mononucleotide (ß-NMN). TND1128 induced the branching of axons and dendrites, and increased the number of excitatory synapses. This study provides new insight into TND1128 as a mitochondria-stimulating drug for improving brain function.


Asunto(s)
Hipocampo/citología , Neuronas/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/ultraestructura , Células Cultivadas , Dendritas/efectos de los fármacos , Dendritas/ultraestructura , Ratones Endogámicos ICR , Neuronas/citología , Sinapsis/efectos de los fármacos
14.
Sci Rep ; 11(1): 10634, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34017040

RESUMEN

Dravet syndrome (DS) is an intractable form of childhood epilepsy that occurs in infancy. More than 80% of all patients have a heterozygous abnormality in the SCN1A gene, which encodes a subunit of Na+ channels in the brain. However, the detailed pathogenesis of DS remains unclear. This study investigated the synaptic pathogenesis of this disease in terms of excitatory/inhibitory balance using a mouse model of DS. We show that excitatory postsynaptic currents were similar between Scn1a knock-in neurons (Scn1a+/- neurons) and wild-type neurons, but inhibitory postsynaptic currents were significantly lower in Scn1a+/- neurons. Moreover, both the vesicular release probability and the number of inhibitory synapses were significantly lower in Scn1a+/- neurons compared with wild-type neurons. There was no proportional increase in inhibitory postsynaptic current amplitude in response to increased extracellular Ca2+ concentrations. Our study revealed that the number of inhibitory synapses is significantly reduced in Scn1a+/- neurons, while the sensitivity of inhibitory synapses to extracellular Ca2+ concentrations is markedly increased. These data suggest that Ca2+ tethering in inhibitory nerve terminals may be disturbed following the synaptic burst, likely leading to epileptic symptoms.


Asunto(s)
Calcio/farmacología , Epilepsias Mioclónicas/fisiopatología , Espacio Extracelular/química , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Inhibición Neural/efectos de los fármacos , Transmisión Sináptica/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Marcación de Gen , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo
15.
Sci Rep ; 11(1): 23, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420078

RESUMEN

Valproic acid (VPA) is widely prescribed to treat epilepsy. Maternal VPA use is, however, clinically restricted because of the severe risk that VPA may cause neurodevelopmental disorders in offspring, such as autism spectrum disorder. Understanding the negative action of VPA may help to prevent VPA-induced neurodevelopmental disorders. Astrocytes play a vital role in neurodevelopment and synapse function; however, the impact of VPA on astrocyte involvement in neurodevelopment and synapse function has not been examined. In this study, we examined whether exposure of cultured astrocytes to VPA alters neuronal morphology and synapse function of co-cultured neurons. We show that synaptic transmission by inhibitory neurons was small because VPA-exposed astrocytes reduced the number of inhibitory synapses. However, synaptic transmission by excitatory neurons and the number of excitatory synapses were normal with VPA-exposed astrocytes. VPA-exposed astrocytes did not affect the morphology of inhibitory neurons. These data indicate that VPA-exposed astrocytes impair synaptogenesis specifically of inhibitory neurons. Our results indicate that maternal use of VPA would affect not only neurons but also astrocytes and would result in perturbed astrocyte-mediated neurodevelopment.


Asunto(s)
Anticonvulsivantes/toxicidad , Astrocitos/efectos de los fármacos , Ácido Valproico/toxicidad , Animales , Anticonvulsivantes/administración & dosificación , Astrocitos/patología , Astrocitos/fisiología , Células Cultivadas , Técnicas de Cocultivo , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/patología , Neuronas GABAérgicas/fisiología , Intercambio Materno-Fetal , Ratones , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/fisiología , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Sinapsis/efectos de los fármacos , Sinapsis/patología , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Ácido Valproico/administración & dosificación
16.
J Pharmacol Sci ; 145(1): 140-149, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33357772

RESUMEN

Inochinohaha White (IHW) is a Japanese herbal medicine for treating women with anxiety associated with premenstrual syndrome (PMS). In this study, we examined the effects of IHW on anxiety-like behavior in rats undergoing progesterone withdrawal (PWD), a model for PMS. Female rats were injected daily with progesterone for 21 days. Water and ethanol extracts of IHW (WE-IHW and EE-IHW, respectively) were administered orally 15 days after the initiation of progesterone injections. Anxiety-like behavior in an elevated plus maze was evaluated 48 h after the final injection of progesterone. PWD induced anxiety-like behavior, and EE-IHW (300 mg/kg), but not WE-IHW, significantly attenuated this behavior. Administration of the GABA agonists, diazepam or muscimol, significantly attenuated PWD-induced anxiety-like behavior. To investigate the underlying mechanisms of IHW action, we analyzed GABAA receptor expression in the amygdala of these rats. EE-IHW ameliorated the PWD-induced decrease in GABAA receptor ß2-subunit mRNA, although ß2-subunit protein was unchanged. Brain-derived neurotrophic factor (BDNF) has been reported to have anxiolytic effects and enhance GABAergic synaptic transmission. We found that EE-IHW increased BDNF levels in a dose-dependent manner. Our results suggest that EE-IHW attenuates PWD-induced anxiety-like behavior by increasing GABAA receptor-mediated signaling via increases in ß2-subunit and BDNF in the amygdala.


Asunto(s)
Ansiedad/tratamiento farmacológico , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Expresión Génica/efectos de los fármacos , Fitoterapia , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Síndrome Premenstrual/tratamiento farmacológico , Síndrome Premenstrual/psicología , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Administración Oral , Amígdala del Cerebelo/metabolismo , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Inyecciones , Síndrome Premenstrual/genética , Progesterona/administración & dosificación , Ratas Wistar
17.
J Pharmacol Sci ; 144(2): 76-82, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32736867

RESUMEN

Astrocytes, comprising the primary glial-cell type, are involved in the formation and maturation of synapses, and thus contribute to sustainable synaptic transmission between neurons. Given that the animals in higher phylogenetic tree have brains with a higher density of glial cells with respect to neurons, there is a possibility that the relative astrocytic density directly influences synaptic transmission. However, the notion has not been tested thoroughly. Here we addressed it, by using a primary culture preparation where single hippocampal neurons are surrounded by a variable but a countable number of cortical astrocytes in dot-patterned microislands, and recording synaptic transmission by patch-clamp electrophysiology. Neurons with a higher astrocytic density showed a higher amplitude of the evoked excitatory postsynaptic current than that of neurons with a lower astrocytic density. The size of the readily releasable pool of synaptic vesicles per neuron was significantly larger. The frequency of spontaneous synaptic transmission was higher, but the amplitude was unchanged. The number of morphologically identified glutamatergic synapses was comparable, but the percentage of functional ones was increased, indicating a lower ratio of presynaptically silent synapses. Taken together, the higher astrocytic density enhanced excitatory synaptic transmission by increasing the fraction of functional synapses through presynaptic un-silencing.


Asunto(s)
Astrocitos/fisiología , Encéfalo/citología , Neuronas/fisiología , Sinapsis/fisiología , Transmisión Sináptica , Animales , Astrocitos/patología , Células Cultivadas , Potenciales Postsinápticos Excitadores , Femenino , Ratones Endogámicos ICR , Neuronas/patología , Filogenia , Embarazo
18.
Biol Pharm Bull ; 42(12): 2009-2015, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31787717

RESUMEN

The traditional herbal medicines yokukansan (YKS) and yokukansankachimpihange (YKSCH) are prescribed for neurosis, insomnia or night crying and irritability in children. YKSCH comprises YKS and two additional herbs, a chimpi and a hange, and is used to treat digestive function deficiencies. However, the differences between the effects of YKS and YKSCH on brain function are unclear. The present study examined the effects of YKS and YKSCH on aggressive behavior in mice reared under a social isolation (SI) condition. Mice were housed individually for 6 weeks. YKS and YKSCH were administered orally for 2 weeks before aggression tests. SI increased aggressive behavior against naïve mice, and YKS, but not YKSCH, significantly attenuated this aggressive behavior. Because serotonin (5-HT)2A and 5-HT3A receptor antagonists are reported to have anti-aggressive effects, the mRNA levels of these receptors were examined. YKS attenuated the SI-induced increase in 5-HT2A and 5-HT3A receptor mRNA in the amygdala. On the other hand, YKSCH attenuated the SI-induced increase in 5-HT1A receptor mRNA. YKS and YKSCH did not affect 5-HT and its metabolite 5-hydroxyindoleacetic acid content in the amygdala. However, YKSCH increased the mRNA level of arginine vasopressin (AVP), which is a neuropeptide that has been implicated in aggression, in the amygdala. These results suggest that YKS ameliorates aggressive behavior by decreasing 5-HT2A and 5-HT3A receptor expression. The YKSCH-induced increase in AVP may disrupt the anti-aggressive effect of YKS. YKS may be more effective than YKSCH for treating irritability if digestive function deficiencies are not considered.


Asunto(s)
Agresión/efectos de los fármacos , Arginina Vasopresina/genética , Conducta Animal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Receptores de Serotonina/genética , Aislamiento Social , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Ácido Hidroxiindolacético/metabolismo , Masculino , Ratones , ARN Mensajero/metabolismo , Serotonina/metabolismo
19.
IBRO Rep ; 7: 34-41, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31388597

RESUMEN

Amyloid ß protein (Aß) is closely related to the progression of Alzheimer's disease because senile plaques consisting of Aß cause synaptic depression and synaptic abnormalities. In the central nervous system, astrocytes are a major glial cell type that contribute to the modulation of synaptic transmission and synaptogenesis. In this study, we examined whether astrocytes exposed to Aß fragment 25-35 (Aß25-35) affect synaptic transmission. We show that synaptic transmission by hippocampal neurons was inhibited by astrocytes exposed to Aß25-35. The Aß25-35-exposed astrocytes lowered excitatory postsynaptic release and the size of the readily releasable synaptic pool. The number of excitatory synapses was also reduced. However, the number of excitatory synapses was unchanged unless there was direct contact between Aß25-35-exposed astrocytes and hippocampal neurons. These data indicate that direct contact between Aß25-35-exposed astrocytes and neurons is critical for inhibiting synaptic transmission in the progression of Alzheimer's disease.

20.
Neuron ; 101(3): 472-485.e7, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30638745

RESUMEN

Minimal sets of transcription factors can directly reprogram somatic cells into neurons. However, epigenetic remodeling during neuronal reprogramming has not been well reconciled with transcriptional regulation. Here we show that NeuroD1 achieves direct neuronal conversion from mouse microglia both in vitro and in vivo. Exogenous NeuroD1 initially occupies closed chromatin regions associated with bivalent trimethylation of histone H3 at lysine 4 (H3K4me3) and H3K27me3 marks in microglia to induce neuronal gene expression. These regions are resolved to a monovalent H3K4me3 mark at later stages of reprogramming to establish the neuronal identity. Furthermore, the transcriptional repressors Scrt1 and Meis2 are induced as NeuroD1 target genes, resulting in a decrease in the expression of microglial genes. In parallel, the microglial epigenetic signature in promoter and enhancer regions is erased. These findings reveal NeuroD1 pioneering activity accompanied by global epigenetic remodeling for two sequential events: onset of neuronal property acquisition and loss of the microglial identity during reprogramming.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Reprogramación Celular , Epigénesis Genética , Microglía/citología , Neuronas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Cuerpo Estriado/citología , Femenino , Células HEK293 , Código de Histonas , Histonas/química , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Microglía/metabolismo , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA