Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Hypertens Res ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831091

RESUMEN

The efficacy of renal denervation (RDN) has been controversial, but recent randomized sham-controlled trials demonstrated significant blood pressure reductions after RDN in patients with hypertension. We conducted a systematic review and updated meta-analysis to evaluate the effects of RDN on ambulatory and office blood pressures in patients with hypertension. Databases were searched up to 15 November 2023 to identify randomized, sham-controlled trials of RDN. The primary endpoint was change in 24 h ambulatory systolic blood pressure (SBP) with RDN versus sham control. The secondary endpoints were changes in 24 h ambulatory diastolic blood pressure, daytime and nighttime blood pressure (BP), office BP, and home BP. A sub-analysis determined outcomes by medication, procedure, and device. From twelve trials, 2222 patients with hypertension were randomized to undergo RDN (n = 1295) or a sham procedure (n = 927). At 2-6 months after treatment, RDN significantly reduced 24 h ambulatory SBP by 2.81 mmHg (95% confidence interval: -4.09, -1.53; p < 0.001) compared with the sham procedure. RDN also reduced daytime SBP by 3.17 mmHg (- 4.75, - 1.58; p < 0.001), nighttime SBP by 3.41 mmHg (- 4.69, - 2.13; p < 0.001), office SBP by 4.95 mmHg (- 6.37, - 3.54; p < 0.001), and home SBP by 4.64 mmHg (- 7.44, - 1.84; p = 0.001) versus the sham control group. There were no significant differences in the magnitude of BP reduction between first- and second-generation trials, between devices, or between with or without medication. These data from randomized sham-controlled trials showed that RDN significantly reduced all blood pressure metrics in medicated or unmedicated patients with hypertension, including resistant/uncontrolled hypertension.

5.
Hypertens Res ; 47(1): 6-32, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37710033

RESUMEN

Total 276 manuscripts were published in Hypertension Research in 2022. Here our editorial members picked up the excellent papers, summarized the current topics from the published papers and discussed future perspectives in the sixteen fields. We hope you enjoy our special feature, 2023 update and perspectives in Hypertension Research.


Asunto(s)
Hipertensión , Factor de Impacto de la Revista , Humanos , Hipertensión/terapia
6.
Hypertens Res ; 46(6): 1462-1470, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36991064

RESUMEN

Inappropriate sympathetic activation is closely associated with the development and progression of hypertension. Renal denervation (RDN) is a neuromodulation therapy performed using an intraarterial catheter in patients with hypertension. Recent randomized sham-operated controlled trials have shown that RDN has significant antihypertensive effects that last for at least 3 years. Based on this evidence, RDN is nearly ready for general clinical application. On the other hand, there are remaining issues to be addressed, including elucidation of the precise antihypertensive mechanisms of RDN, the appropriate endpoint of RDN during the procedure, and the association between reinnervation after RDN and the long-term effects of RDN. This mini review focuses on studies implicating anatomy of the renal nerves, which consist of afferent or efferent and sympathetic or parasympathetic nerves, the response of blood pressure to renal nerve stimulation, and reinnervation of renal nerves after RDN. A comprehensive understanding of the anatomical and functional aspects of the renal nerves and the antihypertensive mechanisms of RDN, including its long-term effects, will enhance our ability to incorporate RDN into strategies to treat hypertension in clinical practice. This mini review focuses on studies implicating anatomy of the renal nerves, which consist of afferent or efferent and sympathetic or parasympathetic nerves, the response of blood pressure to renal nerve stimulation, and reinnervation of renal nerves after renal denervation. Whether the ablation site is sympathetic dominant or parasympathetic dominant, and afferent dominant or efferent dominant, would in turn determine the final output of renal denervation. BP: blood pressure.


Asunto(s)
Antihipertensivos , Hipertensión , Humanos , Antihipertensivos/farmacología , Simpatectomía/métodos , Hipertensión/cirugía , Riñón , Presión Sanguínea/fisiología , Desnervación/métodos , Resultado del Tratamiento
9.
Hypertens Res ; 46(1): 268-279, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36369375

RESUMEN

The activation of sympathetic nervous system plays a critical role in the development of hypertension. The input from afferent renal nerves may affect central sympathetic outflow; however, its contribution to the development of hypertension remains unclear. We investigated the role of afferent renal nerves in acute and chronic blood pressure regulation using normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Acute chemical stimulation of afferent renal nerves elicited larger increases in blood pressure and renal sympathetic nerve activity in young 9-week-old SHRSP compared to WKY. Selective afferent renal denervation (ARDN) and conventional total renal denervation (TRDN) ablating both afferent and efferent nerves in young SHRSP revealed that only TRDN, but not ARDN, chronically attenuated blood pressure elevation. ARDN did not affect plasma renin activity or plasma angiotensin II levels, whereas TRDN decreased both. Neither TRDN nor ARDN affected central sympathetic outflow and systemic sympathetic activity determined by neuronal activity in the parvocellular region of hypothalamic paraventricular nucleus and rostral ventrolateral medulla and by plasma and urinary norepinephrine levels, respectively. Renal injury was not apparent in young SHRSP compared with WKY, suggesting that renal afferent input might not be activated in young SHRSP. In conclusion, the chronic input from afferent renal nerves does not contribute to the development of hypertension in SHRSP despite the increased blood pressure response to the acute stimulation of afferent renal nerves. Efferent renal nerves may be involved in the development of hypertension via activation of the renin-angiotensin system in SHRSP.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Ratas , Animales , Ratas Endogámicas SHR , Presión Sanguínea/fisiología , Ratas Endogámicas WKY , Sistema Nervioso Simpático , Riñón , Proteínas Musculares , Péptidos y Proteínas de Señalización Intracelular
10.
Front Physiol ; 14: 1277065, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38169715

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a heterogenous clinical syndrome characterized by diastolic dysfunction, concentric cardiac left ventricular (LV) hypertrophy, and myocardial fibrosis with preserved systolic function. However, the underlying mechanisms of HFpEF are not clear. We hypothesize that an enhanced central sympathetic drive is sufficient to induce LV dysfunction and HFpEF in rats. Male Sprague-Dawley rats were subjected to central infusion of either saline controls (saline) or angiotensin II (Ang II, 20 ng/min, i.c.v) via osmotic mini-pumps for 14 days to elicit enhanced sympathetic drive. Echocardiography and invasive cardiac catheterization were used to measure systolic and diastolic functions. Mean arterial pressure, heart rate, left ventricular end-diastolic pressure (LVEDP), and ± dP/dt changes in responses to isoproterenol (0.5 µg/kg, iv) were measured. Central infusion of Ang II resulted in increased sympatho-excitation with a consequent increase in blood pressure. Although the ejection fraction was comparable between the groups, there was a decrease in the E/A ratio (saline: 1.5 ± 0.2 vs Ang II: 1.2 ± 0.1). LVEDP was significantly increased in the Ang II-treated group (saline: 1.8 ± 0.2 vs Ang II: 4.6 ± 0.5). The increase in +dP/dt to isoproterenol was not significantly different between the groups, but the response in -dP/dt was significantly lower in Ang II-infused rats (saline: 11,765 ± 708 mmHg/s vs Ang II: 8,581 ± 661). Ang II-infused rats demonstrated an increased heart to body weight ratio, cardiomyocyte hypertrophy, and fibrosis. There were elevated levels of atrial natriuretic peptide and interleukin-6 in the Ang II-infused group. In conclusion, central infusion of Ang II in rats induces sympatho-excitation with concurrent diastolic dysfunction, pathological cardiac concentric hypertrophy, and cardiac fibrosis. This novel model of centrally mediated sympatho-excitation demonstrates characteristic diastolic dysfunction in rats, representing a potentially useful preclinical murine model of HFpEF to investigate various altered underlying mechanisms during HFpEF in future studies.

11.
Hypertens Res ; 45(8): 1276-1297, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35790879

RESUMEN

In 2021, 217 excellent manuscripts were published in Hypertension Research. Editorial teams greatly appreciate the authors' contribution to hypertension research progress. Here, our editorial members have summarized twelve topics from published work and discussed current topics in depth. We hope you enjoy our special feature, "Update on Hypertension Research in 2021".


Asunto(s)
Políticas Editoriales , Hipertensión , Humanos , Hipertensión/tratamiento farmacológico
12.
Circ Res ; 130(10): 1601-1617, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35549375

RESUMEN

The maintenance of cardiovascular homeostasis is highly dependent on tightly controlled interactions between the heart and the kidneys. Therefore, it is not surprising that a dysfunction in one organ affects the other. This interlinking relationship is aptly demonstrated in the cardiorenal syndrome. The characteristics of the cardiorenal syndrome state include alterations in neurohumoral drive, autonomic reflexes, and fluid balance. The evidence suggests that several factors contribute to these alterations. These may include peripheral and central nervous system abnormalities. However, accumulating evidence from animals with experimental models of congestive heart failure and renal dysfunction as well as humans with the cardiorenal syndrome suggests that alterations in neural pathways, from and to the kidneys and the heart, including the central nervous system are involved in regulating sympathetic outflow and may be critically important in the alterations in neurohumoral drive, autonomic reflexes, and fluid balance commonly observed in the cardiorenal syndrome. This review focuses on studies implicating neural pathways, particularly the afferent and efferent signals from the heart and the kidneys integrating at the level of the paraventricular nucleus in the hypothalamus to alter neurohumoral drive, autonomic pathways, and fluid balance. Further, it explores the potential mechanisms of action for the known beneficial use of various medications or potential novel therapeutic manipulations for the treatment of the cardiorenal syndrome. A comprehensive understanding of these mechanisms will enhance our ability to treat cardiorenal conditions and their cardiovascular complications more efficaciously and thoroughly.


Asunto(s)
Síndrome Cardiorrenal , Insuficiencia Cardíaca , Animales , Femenino , Corazón/fisiología , Humanos , Riñón , Masculino , Núcleo Hipotalámico Paraventricular , Sistema Nervioso Simpático
13.
Curr Hypertens Rep ; 24(7): 235-246, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35384579

RESUMEN

PURPOSE OF REVIEW: This review focuses on studies implicating forebrain neural pathways and neuromodulator systems, particularly, the nitric oxide system within the paraventricular nucleus of the hypothalamus in regulating neurohumoral drive, autonomic pathways, and fluid balance. RECENT FINDINGS: Accumulating evidence from animals with experimental models of hypertension and heart failure as well as humans with hypertension suggests that alterations in central neural pathways, particularly, within the PVN neuromodulated by neuronal nitric oxide, are involved in regulating sympathetic outflow particularly to the kidney resulting in alterations in fluid balance commonly observed in hypertension and heart failure states. The characteristics of the hypertensive and heart failure states include alterations in neuronal nitric oxide within the PVN to cause an increase in renal sympathetic nerve activity to result in sodium and fluid retention in these diseases. A comprehensive understanding of these mechanisms will enhance our ability to treat hypertensive and heart failure conditions and their cardiovascular complications more efficiently.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Hipertensión , Animales , Humanos , Óxido Nítrico/metabolismo , Núcleo Hipotalámico Paraventricular/fisiología , Reflejo/fisiología , Sistema Nervioso Simpático
15.
Hypertens Res ; 45(2): 198-209, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34921299

RESUMEN

Renal nerves have critical roles in regulating blood pressure and fluid volume, and their dysfunction is closely related with cardiovascular diseases. Renal nerves are composed of sympathetic efferent and sensory afferent nerves. Activation of the efferent renal sympathetic nerves induces renin secretion, sodium absorption, and increased renal vascular resistance, which lead to increased blood pressure and fluid retention. Afferent renal sensory nerves, which are densely innervated in the renal pelvic wall, project to the hypothalamic paraventricular nucleus in the brain to modulate sympathetic outflow to the periphery, including the heart, kidneys, and arterioles. The effects of renal denervation on the cardiovascular system are mediated by both efferent denervation and afferent denervation. The first half of this review focuses on basic research using animal models of hypertension and heart failure, and addresses the therapeutic effects of renal denervation for hypertension and heart failure, including underlying mechanisms. The second half of this review focuses on clinical research related to catheter-based renal denervation in patients with hypertension. Randomized sham-controlled trials using second-generation devices, endovascular radiofrequency-based devices and ultrasound-based devices are reviewed and their results are assessed. This review summarizes the basic and clinical evidence of renal denervation to date, and discusses future prospects and potential developments in renal denervation therapy for cardiovascular diseases.


Asunto(s)
Hipertensión , Riñón , Animales , Presión Sanguínea , Desnervación , Humanos , Simpatectomía , Sistema Nervioso Simpático
16.
Front Physiol ; 12: 718982, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912235

RESUMEN

Aims: Hypertension increases the risk of heart disease. Hallmark features of hypertensive heart disease is sympathoexcitation and cardiac mitochondrial abnormality. However, the molecular mechanisms for specifically neurally mediated mitochondrial abnormality and subsequent cardiac dysfunction are unclear. We hypothesized that enhanced sympatho-excitation to the heart elicits cardiac miR-18a-5p/HIF-1α and mitochondrial unfolded protein response (UPRmt) signaling that lead to mitochondrial abnormalities and consequent pathological cardiac remodeling. Methods and Results: Using a model of neurogenic hypertension (NG-HTN), induced by intracerebroventricular (ICV) infusion of Ang II (NG-HTN; 20 ng/min, 14 days, 0.5 µl/h, or Saline; Control, 0.9%) through osmotic mini-pumps in Sprague-Dawley rats (250-300 g), we attempted to identify a link between sympathoexcitation (norepinephrine; NE), miRNA and HIF-1α signaling and UPRmt to produce mitochondrial abnormalities resulting in cardiomyopathy. Cardiac remodeling, mitochondrial abnormality, and miRNA/HIF-1α signaling were assessed using histology, immunocytochemistry, electron microscopy, Western blotting or RT-qPCR. NG-HTN demonstrated increased sympatho-excitation with concomitant reduction in UPRmt, miRNA-18a-5p and increased level of HIF-1α in the heart. Our in silico analysis indicated that miR-18a-5p targets HIF-1α. Direct effects of NE on miRNA/HIF-1α signaling and mitochondrial abnormality examined using H9c2 rat cardiomyocytes showed NE reduces miR-18a-5p but increases HIF-1α. Electron microscopy revealed cardiac mitochondrial abnormality in NG-HTN, linked with hypertrophic cardiomyopathy and fibrosis. Mitochondrial unfolded protein response was decreased in NG-HTN indicating mitochondrial proteinopathy and proteotoxic stress, associated with increased mito-ROS and decreased mitochondrial membrane potential (ΔΨm), and oxidative phosphorylation. Further, there was reduced cardiac mitochondrial biogenesis and fusion, but increased mitochondrial fission, coupled with mitochondrial impaired TIM-TOM transport and UPRmt. Direct effects of NE on H9c2 rat cardiomyocytes also showed cardiomyocyte hypertrophy, increased mitochondrial ROS generation, and UPRmt corroborating the in vivo data. Conclusion: In conclusion, enhanced sympatho-excitation suppress miR-18a-5p/HIF-1α signaling and increased mitochondrial stress proteotoxicity, decreased UPRmt leading to decreased mitochondrial dynamics/OXPHOS/ΔΨm and ROS generation. Taken together, these results suggest that ROS induced mitochondrial transition pore opening activates pro-hypertrophy/fibrosis/inflammatory factors that induce pathological cardiac hypertrophy and fibrosis commonly observed in NG-HTN.

17.
Circ Heart Fail ; 14(12): e008365, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34789005

RESUMEN

BACKGROUND: Recent clinical studies demonstrate that SGLT2 (sodium-glucose cotransporter 2) inhibitors ameliorate heart failure (HF). The present study was conducted to assess the expression and function of renal SGLT2 and the influence of enhanced renal sympathetic tone in HF. METHODS: Four weeks after coronary artery ligation surgery to induce HF, surgical bilateral renal denervation (RDN) was performed in rats. Four groups of rats (Sham-operated control [Sham], Sham+RDN, HF and HF+RDN; n=6/group) were used. Immunohistochemistry and Western blot analysis were performed to evaluate the renal SGLT2 expression. One week after RDN (5 weeks after induction of HF), intravenous injection of SGLT2 inhibitor dapagliflozin were performed to assess renal excretory responses. In vitro, human embryonic kidney cells were used to investigate the fractionation of SGLT2 after norepinephrine treatment. RESULTS: In rats with HF, (1) SGLT2 expression in the proximal tubule of the kidney was increased; (2) the response of increases in urine flow, sodium excretion, and glucose excretion to dapagliflozin were greater; and (3) RDN attenuated renal SGLT2 expression and normalized renal functional responses to dapagliflozin. In vitro, norepinephrine promoted translocation of SGLT2 to the cell membrane. CONCLUSIONS: These results indicate that the enhanced tonic renal sympathetic nerve activation in HF increases the expression and functional activity of renal SGLT2. Potentiated trafficking of SGLT2 to cell surface in renal proximal tubules mediated by norepinephrine may contribute to this functional activation of SGLT2 in HF. These findings provide critical insight into the underlying mechanisms for the beneficial effects of SGLT2 inhibitors on HF reported in the clinical studies.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Riñón/inervación , Transportador 2 de Sodio-Glucosa/metabolismo , Animales , Glucosa/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratas Sprague-Dawley , Sodio/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología
18.
Hypertens Res ; 44(11): 1385-1394, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34518650

RESUMEN

Excessive activation of the sympathetic nervous system is one of the pathophysiological hallmarks of hypertension and heart failure. Within the central nervous system, the paraventricular nucleus (PVN) of the hypothalamus and the rostral ventrolateral medulla in the brain stem play critical roles in the regulation of sympathetic outflow to peripheral organs. Information from the peripheral circulation, including serum concentrations of sodium and angiotensin II, is conveyed to the PVN via adjacent structures with a weak blood-brain barrier. In addition, signals from baroreceptors, chemoreceptors and cardiopulmonary receptors as well as afferent input via the renal nerves are all integrated at the level of the PVN. The brain renin-angiotensin system and the balance between nitric oxide and reactive oxygen species in these brain areas also determine the final sympathetic outflow. Additionally, brain inflammatory responses have been shown to modulate these processes. Renal denervation interrupts both the afferent inputs from the kidney to the PVN and the efferent outputs from the PVN to the kidney, resulting in the suppression of sympathetic outflow and eliciting beneficial effects on both hypertension and heart failure.


Asunto(s)
Núcleo Hipotalámico Paraventricular , Sistema Nervioso Simpático , Animales , Presión Sanguínea , Desnervación , Riñón , Ratas , Ratas Sprague-Dawley
20.
Hypertension ; 77(1): 147-157, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296248

RESUMEN

Central infusion of Ang II (angiotensin II) has been associated with increased sympathetic outflow resulting in neurogenic hypertension. In the present study, we appraised whether the chronic increase in central Ang II activates the paraventricular nucleus of the hypothalamus (PVN) resulting in elevated sympathetic tone and altered baro- and chemoreflexes. Further, we evaluated the contribution of HIF-1α (hypoxia-inducible factor-1α), a transcription factor involved in enhancing the expression of N-methyl-D-aspartate receptors and thus glutamatergic-mediated sympathetic tone from the PVN. Ang II infusion (20 ng/minute, intracerebroventricular, 14 days) increased mean arterial pressure (126±9 versus 84±4 mm Hg), cardiac sympathetic tone (96±7 versus 75±6 bpm), and decreased cardiac parasympathetic tone (16±2 versus 36±3 versus bpm) compared with saline-infused controls in conscious rats. The Ang II-infused group also showed an impaired baroreflex control of heart rate (-1.50±0.1 versus -2.50±0.3 bpm/mm Hg), potentiation of the chemoreflex pressor response (53±7 versus 30±7 mm Hg) and increased number of FosB-labeled cells (53±3 versus 19±4) in the PVN. Concomitant with the activation of the PVN, there was an increased expression of HIF-1α and N-Methyl-D-Aspartate-type1 receptors in the PVN. Further, Ang II-infusion showed increased renal sympathetic nerve activity (20.5±2.3% versus 6.4±1.9% of Max) and 3-fold enhanced renal sympathetic nerve activity responses to microinjection of N-methyl-D-aspartate (200 pmol) into the PVN of anesthetized rats. Further, silencing of HIF-1α in NG108 cells abrogated the expression of N-methyl-D-aspartate-N-methyl-D-aspartate-type1 induced by Ang II. Taken together, our studies suggest a novel Ang II-HIF-1α-N-methyl-D-aspartate receptor-mediated activation of preautonomic neurons in the PVN, resulting in increased sympathetic outflow and alterations in baro- and chemoreflexes.


Asunto(s)
Angiotensina II/farmacología , Ácido Glutámico/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Animales , Barorreflejo/efectos de los fármacos , Barorreflejo/fisiología , Hipertensión/fisiopatología , Riñón/inervación , Masculino , N-Metilaspartato/farmacología , Núcleo Hipotalámico Paraventricular/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/fisiología , Sistema Nervioso Simpático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA