Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
BMC Biotechnol ; 19(1): 41, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253157

RESUMEN

BACKGROUND: Pythium irregulare is an oleaginous Oomycete able to accumulate large amounts of lipids, including Eicosapentaenoic acid (EPA). EPA is an important and expensive dietary supplement with a promising and very competitive market, which is dependent on fish-oil extraction. This has prompted several research groups to study biotechnological routes to obtain specific fatty acids rather than a mixture of various lipids. Moreover, microorganisms can use low cost carbon sources for lipid production, thus reducing production costs. Previous studies have highlighted the production of EPA by P. irregulare, exploiting diverse low cost carbon sources that are produced in large amounts, such as vinasse, glycerol, and food wastewater. However, there is still a lack of knowledge about its biosynthetic pathways, because no functional annotation of any Pythium sp. exists yet. The goal of this work was to identify key genes and pathways related to EPA biosynthesis, in P. irregulare CBS 494.86, by sequencing and performing an unprecedented annotation of its genome, considering the possibility of using wastewater as a carbon source. RESULTS: Genome sequencing provided 17,727 candidate genes, with 3809 of them associated with enzyme code and 945 with membrane transporter proteins. The functional annotation was compared with curated information of oleaginous organisms, understanding amino acids and fatty acids production, and consumption of carbon and nitrogen sources, present in the wastewater. The main features include the presence of genes related to the consumption of several sugars and candidate genes of unsaturated fatty acids production. CONCLUSIONS: The whole metabolic genome presented, which is an unprecedented reconstruction of P. irregulare CBS 494.86, shows its potential to produce value-added products, in special EPA, for food and pharmaceutical industries, moreover it infers metabolic capabilities of the microorganism by incorporating information obtained from literature and genomic data, supplying information of great importance to future work.


Asunto(s)
Ácido Eicosapentaenoico/biosíntesis , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Pythium/genética , Suplementos Dietéticos , Proteínas Fúngicas/metabolismo , Microbiología Industrial/métodos , Pythium/metabolismo
2.
Appl Microbiol Biotechnol ; 101(21): 7789-7809, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28921339

RESUMEN

The use of yeasts in bioprocesses can be considered one of the most relevant strategies in industrial biotechnology, and their potential is recognized due to the ability of these microorganisms for production of diverse value-added compounds. Yeasts from Ustilaginaceae family have been highlighted in the last years as a promising source of industrial interesting compounds, including enzymes, sugars, lipids, organic acids, and biosurfactants. These compounds may exhibit various applications in pharmaceutical, cosmetic, food, medical, and environmental fields, increasing the scientific attention in the study of ustilaginomycetous for biotechnological purposes. In this mini-review, we provide a comprehensive overview about the biotechnological use of yeasts from Ustilaginaceae family to produce value-added compounds, focusing in recent trends, characteristics of processes currently developed, new opportunities, and potential applications.


Asunto(s)
Factores Biológicos/genética , Factores Biológicos/metabolismo , Biotecnología/métodos , Microbiología Industrial/métodos , Ustilaginales/genética , Ustilaginales/metabolismo , Biotecnología/tendencias , Microbiología Industrial/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA