Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6520, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095399

RESUMEN

Neural wearables can enable life-saving drowsiness and health monitoring for pilots and drivers. While existing in-cabin sensors may provide alerts, wearables can enable monitoring across more environments. Current neural wearables are promising but most require wet-electrodes and bulky electronics. This work showcases in-ear, dry-electrode earpieces used to monitor drowsiness with compact hardware. The employed system integrates additive-manufacturing for dry, user-generic earpieces, existing wireless electronics, and offline classification algorithms. Thirty-five hours of electrophysiological data were recorded across nine subjects performing drowsiness-inducing tasks. Three classifier models were trained with user-specific, leave-one-trial-out, and leave-one-user-out splits. The support-vector-machine classifier achieved an accuracy of 93.2% while evaluating users it has seen before and 93.3% when evaluating a never-before-seen user. These results demonstrate wireless, dry, user-generic earpieces used to classify drowsiness with comparable accuracies to existing state-of-the-art, wet electrode in-ear and scalp systems. Further, this work illustrates the feasibility of population-trained classification in future electrophysiological applications.


Asunto(s)
Electroencefalografía , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Humanos , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Tecnología Inalámbrica/instrumentación , Masculino , Adulto , Fases del Sueño/fisiología , Femenino , Oído/fisiología , Electrodos , Algoritmos , Máquina de Vectores de Soporte , Adulto Joven , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36086111

RESUMEN

Drowsiness monitoring can reduce workplace and driving accidents. To enable a discreet device for drowsiness monitoring and detection, this work presents a drowsiness user-study with an in-ear EEG system, which uses two user-generic, dry electrode earpieces and a wireless interface for streaming data. Twenty-one drowsiness trials were recorded across five human users and drowsiness detection was implemented with three classifier models: logistic regression, support vector machine (SVM), and random forest. To estimate drowsiness detection performance across usage scenarios, these classifiers were validated with user-specific, leave-one-trial-out, and leave-one-user-out training. To our knowledge, this is the first wireless, multi-channel, dry electrode in-ear EEG to be used for drowsiness monitoring. With user-specific training, a SVM achieved a detection accuracy of 95.9%. When evaluating a never-before-seen user, a similar SVM achieved a 94.5% accuracy, comparable to the best performing state-of-the-art wet electrode in-ear and scalp EEG systems.


Asunto(s)
Conducción de Automóvil , Electroencefalografía , Electrodos , Humanos , Máquina de Vectores de Soporte , Vigilia
3.
IEEE Trans Biomed Circuits Syst ; 14(4): 727-737, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32746342

RESUMEN

In the past few years it has been demonstrated that electroencephalography (EEG) can be recorded from inside the ear (in-ear EEG). To open the door to low-profile earpieces as wearable brain-computer interfaces (BCIs), this work presents a practical in-ear EEG device based on multiple dry electrodes, a user-generic design, and a lightweight wireless interface for streaming data and device programming. The earpiece is designed for improved ear canal contact across a wide population of users and is fabricated in a low-cost and scalable manufacturing process based on standard techniques such as vacuum forming, plasma-treatment, and spray coating. A 2.5 × 2.5 cm2 wireless recording module is designed to record and stream data wirelessly to a host computer. Performance was evaluated on three human subjects over three months and compared with clinical-grade wet scalp EEG recordings. Recordings of spontaneous and evoked physiological signals, eye-blinks, alpha rhythm, and the auditory steady-state response (ASSR), are presented. This is the first wireless in-ear EEG to our knowledge to incorporate a dry multielectrode, user-generic design. The user-generic ear EEG recorded a mean alpha modulation of 2.17, outperforming the state-of-the-art in dry electrode in-ear EEG systems.


Asunto(s)
Interfaces Cerebro-Computador , Oído/fisiología , Electroencefalografía/instrumentación , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica/instrumentación , Parpadeo/fisiología , Encéfalo/fisiología , Electrodos , Diseño de Equipo , Humanos , Cuero Cabelludo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA