Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
ACS Chem Biol ; 18(7): 1548-1556, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37306676

RESUMEN

Mycobacteria and other organisms in the order Mycobacteriales cause a range of significant human diseases, including tuberculosis, leprosy, diphtheria, Buruli ulcer, and non-tuberculous mycobacterial (NTM) disease. However, the intrinsic drug tolerance engendered by the mycobacterial cell envelope undermines conventional antibiotic treatment and contributes to acquired drug resistance. Motivated by the need to augment antibiotics with novel therapeutic approaches, we developed a strategy to specifically decorate mycobacterial cell surface glycans with antibody-recruiting molecules (ARMs), which flag bacteria for binding to human-endogenous antibodies that enhance macrophage effector functions. Mycobacterium-specific ARMs consisting of a trehalose targeting moiety and a dinitrophenyl hapten (Tre-DNPs) were synthesized and shown to specifically incorporate into outer-membrane glycolipids of Mycobacterium smegmatis via trehalose metabolism, enabling recruitment of anti-DNP antibodies to the mycobacterial cell surface. Phagocytosis of Tre-DNP-modified M. smegmatis by macrophages was significantly enhanced in the presence of anti-DNP antibodies, demonstrating proof-of-concept that our strategy can augment the host immune response. Because the metabolic pathways responsible for cell surface incorporation of Tre-DNPs are conserved in all Mycobacteriales organisms but absent from other bacteria and humans, the reported tools may be enlisted to interrogate host-pathogen interactions and develop immune-targeting strategies for diverse mycobacterial pathogens.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium , Tuberculosis , Humanos , Trehalosa , Mycobacterium smegmatis , Membrana Celular , Mycobacterium tuberculosis/química
3.
ACS Infect Dis ; 8(11): 2223-2231, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36288262

RESUMEN

In mycobacteria, the glucose-based disaccharide trehalose cycles between the cytoplasm, where it is a stress protectant and carbon source, and the cell envelope, where it is released as a byproduct of outer mycomembrane glycan biosynthesis and turnover. Trehalose recycling via the LpqY-SugABC transporter promotes virulence, antibiotic recalcitrance, and efficient adaptation to nutrient deprivation. The source(s) of trehalose and the regulation of recycling under these and other stressors are unclear. A key technical gap in addressing these questions has been the inability to trace trehalose recycling in situ, directly from its site of liberation from the cell envelope. Here we describe a bifunctional chemical reporter that simultaneously marks mycomembrane biosynthesis and subsequent trehalose recycling with alkyne and azide groups. Using this probe, we discovered that the recycling efficiency for trehalose increases upon carbon starvation, concomitant with an increase in LpqY-SugABC expression. The ability of the bifunctional reporter to probe multiple, linked steps provides a more nuanced understanding of mycobacterial cell envelope metabolism and its plasticity under stress.


Asunto(s)
Mycobacterium , Trehalosa , Trehalosa/metabolismo , Pared Celular/metabolismo , Membrana Celular/metabolismo , Carbono/metabolismo
4.
ACS Chem Biol ; 17(11): 3047-3058, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-35142488

RESUMEN

Vaccines are critical tools to treat and prevent diseases. For an effective conjugate vaccine, the carrier is crucial, but few carriers are available for clinical applications. In addition, a drawback of current protein carriers is that high levels of antibodies against the carrier are induced by the conjugate vaccine, which are known to interfere with the immune responses against the target antigen. To overcome these challenges, we obtained the near atomic resolution crystal structure of an emerging protein carrier, i.e., the bacteriophage Qß virus like particle. On the basis of the detailed structural information, novel mutants of bacteriophage Qß (mQß) have been designed, which upon conjugation with tumor associated carbohydrate antigens (TACAs), a class of important tumor antigens, elicited powerful anti-TACA IgG responses and yet produced lower levels of anticarrier antibodies as compared to those from the wild type Qß-TACA conjugates. In a therapeutic model against an aggressive breast cancer in mice, 100% unimmunized mice succumbed to tumors in just 12 days even with chemotherapy. In contrast, 80% of mice immunized with the mQß-TACA conjugate were completely free from tumors. Besides TACAs, to aid in the development of vaccines to protect against COVID-19, the mQß based conjugate vaccine has been shown to induce high levels of IgG antibodies against peptide antigens from the SARS-CoV-2 virus, demonstrating its generality. Thus, mQß is a promising next-generation carrier platform for conjugate vaccines, and structure-based rational design is a powerful strategy to develop new vaccine carriers.


Asunto(s)
COVID-19 , Neoplasias , Ratones , Animales , Vacunas Conjugadas , SARS-CoV-2 , Allolevivirus/química , Antígenos de Carbohidratos Asociados a Tumores , Inmunoglobulina G , Neoplasias/terapia
5.
Chem Rev ; 122(3): 3336-3413, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34905344

RESUMEN

Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.


Asunto(s)
Glicoproteínas , Polisacáridos , Bacterias/metabolismo , Membrana Celular/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Polisacáridos/química
6.
Angew Chem Int Ed Engl ; 60(45): 24179-24188, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34469031

RESUMEN

Ganglioside GD2 is an attractive tumor-associated carbohydrate antigen for anti-cancer vaccine development. However, its low immunogenicity and the significant side effects observed with anti-GD2 antibodies present significant obstacles for vaccines. To overcome these, a new GD2 derivative bearing an N-acetamide (NHAc) at its non-reducing end neuraminic acid (9NHAc-GD2) has been designed to mimic the 9-O-acetylated-GD2 (9OAc-GD2), a GD2 based antigen with a restricted expression on tumor cells. 9NHAc-GD2 was synthesized efficiently via a chemoenzymatic method and subsequently conjugated with a powerful carrier bacteriophage Qß. Mouse immunization with the Qß-9NHAc-GD2 conjugate elicited strong and long-lasting IgG antibodies, which were highly selective toward 9NHAc-GD2 with little cross-recognition of GD2. Immunization of canines with Qß-9NHAc-GD2 showed the construct was immunogenic in canines with little adverse effects, paving the way for future clinical translation to humans.


Asunto(s)
Vacunas contra el Cáncer/química , Gangliósidos/síntesis química , Vacunas Conjugadas/química , Acetamidas/química , Acetamidas/inmunología , Acetilación , Animales , Vacunas contra el Cáncer/inmunología , Conformación de Carbohidratos , Gangliósidos/química , Gangliósidos/inmunología , Hidrólisis , Ratones , Ácidos Neuramínicos/química , Ácidos Neuramínicos/inmunología , Desarrollo de Vacunas , Vacunas Conjugadas/inmunología
7.
J Am Chem Soc ; 142(17): 7725-7731, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32293873

RESUMEN

Mycobacteria have a distinctive glycolipid-rich outer membrane, the mycomembrane, which is a critical target for tuberculosis drug development. However, proteins that associate with the mycomembrane, or that are involved in its metabolism and host interactions, are not well-characterized. To facilitate the study of mycomembrane-related proteins, we developed photoactivatable trehalose monomycolate analogues that metabolically incorporate into the mycomembrane in live mycobacteria, enabling in vivo photo-cross-linking and click-chemistry-mediated analysis of mycolate-interacting proteins. When deployed in Mycobacterium smegmatis with quantitative proteomics, this strategy enriched over 100 proteins, including the mycomembrane porin (MspA), several proteins with known mycomembrane synthesis or remodeling functions (CmrA, MmpL3, Ag85, Tdmh), and numerous candidate mycolate-interacting proteins. Our approach is highly versatile, as it (i) enlists click chemistry for flexible protein functionalization; (ii) in principle can be applied to any mycobacterial species to identify endogenous bacterial proteins or host proteins that interact with mycolates; and (iii) can potentially be expanded to investigate protein interactions with other mycobacterial lipids. This tool is expected to help elucidate fundamental physiological and pathological processes related to the mycomembrane and may reveal novel diagnostic and therapeutic targets.


Asunto(s)
Química Clic/métodos , Glucolípidos/química , Mycobacterium/patogenicidad , Proteínas/metabolismo , Humanos
8.
ACS Omega ; 4(2): 4348-4359, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30842987

RESUMEN

The mycobacterial outer membrane, or mycomembrane, is essential for the viability and virulence of Mycobacterium tuberculosis and related pathogens. The mycomembrane is a dynamic structure, whose chemical composition and biophysical properties can change during stress to give an advantage to the bacterium. However, the mechanisms that govern mycomembrane remodeling and their significance to mycobacterial pathogenesis are still not well characterized. Recent studies have shown that trehalose dimycolate (TDM), a major glycolipid of the mycomembrane, is broken down by the mycobacteria-specific enzyme TDM hydrolase (Tdmh) in response to nutrient deprivation, a process which appears to modulate the mycomembrane to increase nutrient acquisition, but at the expense of stress tolerance. Tdmh activity thus balances the growth of M. tuberculosis during infection in a manner that is contingent upon host immunity. Current methods to probe Tdmh activity are limited, impeding the development of inhibitors and the investigation of the role of Tdmh in bacterial growth and persistence. Here, we describe the synthesis and evaluation of FRET-TDM, which is a fluorescence-quenched analogue of TDM that is designed to fluoresce upon hydrolysis by Tdmh and potentially other trehalose ester-degrading hydrolases involved in mycomembrane remodeling. We found that FRET-TDM was efficiently activated in vitro by recombinant Tdmh, generating a 100-fold increase in fluorescence. FRET-TDM was also efficiently activated in the presence of whole cells of Mycobacterium smegmatis and M. tuberculosis, but the observed signal was predominantly Tdmh-independent, suggesting that physiological levels of Tdmh are low and that other mycobacterial enzymes also hydrolyze the probe. The latter notion was confirmed by employing a native protein gel-based fluorescence assay to profile FRET-TDM-activating enzymes from M. smegmatis lysates. On the other hand, FRET-TDM was capable of detecting the activity of Tdmh in cells when it was overexpressed. Together, our data demonstrate that FRET-TDM is a convenient and sensitive in vitro probe of Tdmh activity, which will be beneficial for Tdmh enzymatic characterization and inhibitor screening. In more complex samples, for example, live cells or cell lysates, FRET-TDM can serve as a tool to probe Tdmh activity at elevated enzyme levels, and it may facilitate the identification and characterization of related hydrolases that are involved in mycomembrane remodeling. Our study also provides insights as to how the structure of FRET-TDM or related fluorogenic probes can be optimized to achieve improved specificity and sensitivity for detecting mycobacteria.

9.
Carbohydr Res ; 472: 16-22, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30428395

RESUMEN

Trehalose analogues bearing fluorescent and click chemistry tags have been developed as probes of bacterial trehalose metabolism, but these tools have limitations with respect to in vivo imaging applications. Here, we report the radiosynthesis of the 18F-modified trehalose analogue 2-deoxy-2-[18F]fluoro-d-trehalose ([18F]-2-FDTre), which in principle can be used in conjunction with positron emission tomography (PET) imaging to allow in vivo imaging of trehalose metabolism in various contexts. A chemoenzymatic method employing the thermophilic TreT enzyme from Thermoproteus tenax was used to rapidly (15-20 min), efficiently (70% radiochemical yield; ≥ 95% radiochemical purity), and reproducibly convert the commercially available radiotracer 2-deoxy-2-[18F]fluoro-d-glucose ([18F]-2-FDG) into the target radioprobe [18F]-2-FDTre in a single step; both manual and automated syntheses were performed with similar results. Cellular uptake experiments showed that radiosynthetic [18F]-2-FDTre was metabolized by Mycobacterium smegmatis but not by various mammalian cell lines, pointing to the potential future use of this radioprobe for selective PET imaging of infections caused by trehalose-metabolizing bacterial pathogens such as M. tuberculosis.


Asunto(s)
Radioisótopos de Flúor/química , Mycobacterium smegmatis/ultraestructura , Trehalosa/análogos & derivados , Trehalosa/análisis , Línea Celular , Química Clic , Células HT29 , Humanos , Estructura Molecular , Mycobacterium smegmatis/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/farmacocinética , Thermoproteus/enzimología , Trehalosa/química , Trehalosa/metabolismo
10.
Chembiochem ; 20(10): 1282-1291, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30589191

RESUMEN

Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)-catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne-modified TMM analogue (O-AlkTMM-C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM-based reporters bearing alkyne, azide, trans-cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one- or two-step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell-surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole-cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies.


Asunto(s)
Membrana Celular/química , Factores Cordón/química , Corynebacterium/química , Aciltransferasas/metabolismo , Alquinos/síntesis química , Alquinos/química , Alquinos/metabolismo , Azidas/síntesis química , Azidas/química , Azidas/metabolismo , Bacillus subtilis/química , Ingeniería Celular/métodos , Membrana Celular/metabolismo , Química Clic , Factores Cordón/síntesis química , Factores Cordón/metabolismo , Escherichia coli/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Estructura Molecular , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química
11.
Cancer Immunol Immunother ; 66(4): 451-460, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28011995

RESUMEN

Cytotoxic T lymphocyte (CTL) can have remarkable abilities to kill tumor cells. However, the establishment of successful CTL-based anticancer therapy has met with many challenges. Within tumor cells, there exist subpopulations with low or no expression of the targeted antigen (termed as antigen-loss variants). In addition, tumor cells can downregulate the levels of major histocompatibility complex class I (MHC-I) molecules on cell surface due to immune pressure. As a result, some tumor cells can escape the immune pressure bestowed by CTLs, resulting in treatment failure. To address these difficulties, a new approach is developed to deliver foreign high-affinity CTL epitopes to tumor tissues utilizing pH-responsive "smart" microparticles (MPs). These MPs could encapsulate CTL peptide epitope, release the peptide under acidic condition encountered in tumor tissues and enhance CTL activation. Mice bearing pre-established tumor as "antigen-loss variant" solid tumor models were administered intratumorally with MPs containing the CTL peptide, which showed 100% survival following the treatment. In contrast, all control mice died from tumor. Significant protection from tumor-induced death was also observed with systemic administration of CTL peptide-MPs. The therapeutic efficacy can be attributed to enhanced delivery of the epitope to tumor tissues, presentation of the epitope by tumor cells as well as tumor stromal cells and/or generation of epitope-specific CTLs by the peptide-containing MPs. These findings offer a promising new direction for treating established solid tumor using CTL therapy.


Asunto(s)
Adenocarcinoma/terapia , Epítopos de Linfocito T/administración & dosificación , Inmunoterapia/métodos , Liposomas/administración & dosificación , Linfoma/terapia , Péptidos/administración & dosificación , Linfocitos T Citotóxicos/inmunología , Adenocarcinoma/inmunología , Animales , Línea Celular Tumoral , Epítopos de Linfocito T/química , Femenino , Humanos , Concentración de Iones de Hidrógeno , Liposomas/química , Activación de Linfocitos , Linfoma/inmunología , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Neoplasias Experimentales , Péptidos/química , Escape del Tumor
12.
Chem Commun (Camb) ; 52(95): 13795-13798, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27831572

RESUMEN

Protein O-mycoloylation is a unique post-translational lipidation that was recently discovered in Corynebacterium. We describe an alkyne-modified trehalose monomycolate chemical reporter that can metabolically tag O-mycoloylated proteins in C. glutamicum, enabling their detection and identification through click chemistry.


Asunto(s)
Alquinos/metabolismo , Proteínas Bacterianas/análisis , Factores Cordón/metabolismo , Corynebacterium/química , Alquinos/química , Proteínas Bacterianas/metabolismo , Química Clic , Factores Cordón/química , Corynebacterium/metabolismo , Estructura Molecular , Procesamiento Proteico-Postraduccional
13.
Angew Chem Int Ed Engl ; 55(6): 2053-7, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26757001

RESUMEN

The global pathogen Mycobacterium tuberculosis and other species in the suborder Corynebacterineae possess a distinctive outer membrane called the mycomembrane (MM). The MM is composed of mycolic acids, which are either covalently linked to an underlying arabinogalactan layer or incorporated into trehalose glycolipids that associate with the MM non-covalently. These structures are generated through a process called mycolylation, which is central to mycobacterial physiology and pathogenesis and is an important target for tuberculosis drug development. Current approaches to investigating mycolylation rely on arduous analytical methods that occur outside the context of a whole cell. Herein, we describe mycobacteria-specific chemical reporters that can selectively probe either covalent arabinogalactan mycolates or non-covalent trehalose mycolates in live mycobacteria. These probes, in conjunction with bioorthogonal chemistry, enable selective in situ detection of the major MM components.


Asunto(s)
Membrana Celular/química , Sondas Moleculares/química , Mycobacterium/química , Mycobacterium/citología , Ácidos Micólicos/análisis , Ácidos Micólicos/química , Estructura Molecular
14.
Isr J Chem ; 55(3-4): 423-436, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27110035

RESUMEN

Cancer cells can have characteristic carbohydrate binding properties. Previously, it was shown that a highly metastatic melanoma cell line B16F10 bound to galacto-side-functionalized nanoparticles much stronger than the corresponding less metastatic B16F1 cells. To better understand the carbohydrate binding properties of cancer cells, herein, we report the isolation and characterization of endogenous galactose binding proteins from B16F10 cells using magnetic glyconanoparticles. The galactose-coated magnetic glyconanoparticles could bind with lectins present in the cells and be isolated through magnet-mediated separation. Through Western blot and mass spectrometry, the arginine/serine rich splicing factor Sfrs1 was identified as a galactose-selective endogenous lectin, overexpressed in B16F10 cells, compared with B16F1 cells. In addition, galactin-3 was found in higher amounts in B16F10 cells. Finally, the glyconanoparticles exhibited a superior efficiency in lectin isolation, from both protein mixtures and live cells, than the corresponding more traditional microparticles functionalized with carbohydrates. Thus, the magnetic glyconanoparticles present a useful tool for discovery of endogenous lectins, as well as binding partners of lectins, without prior knowledge of protein identities.

15.
ACS Appl Mater Interfaces ; 6(1): 697-705, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24308364

RESUMEN

Magnetic nanoparticles are attractive platforms for biomedical applications including diagnosis and treatment of diseases. We have shown previously that hyaluronan-coated superparamagnetic iron oxide nanoparticles (HA-SPIONs) enhanced the efficacy of the conjugated anticancer drug doxorubicin (DOX) in vitro against drug-sensitive and drug-resistant human ovarian cancer cells. In this manuscript, we report our findings on the efficacy of DOX loaded HA-SPIONs in vivo using subcutaneous and intraperitoneal SKOV-3 ovarian tumor models in nude mice. The accumulation of the nanoparticles in subcutaneous tumors following an intravenous nanoparticle administration was confirmed by magnetic resonance imaging, and its distribution in the tumors was evaluated by confocal microscopy and Prussian blue staining. DOX delivered by nanoparticles accumulated at much higher levels and distributed wider in the tumor tissue than intravenously injected free DOX, leading to significant reduction of tumor growth. The IVIS Spectrum for in vivo bioluminescence imaging was used to aid in therapy assessment of the DOX-loaded nanoparticles on intraperitoneal ovarian tumors formed by firefly luciferase expressing human ovarian SKOV-3 cells. DOX-loaded HA-SPIONs significantly reduced tumor growth, delayed tumor development, and extended the survival of mice. Thus, utilizing HA-SPIONs as drug delivery vehicles constitutes a promising approach to tackle CD44 expressing ovarian cancer.


Asunto(s)
Antibióticos Antineoplásicos/uso terapéutico , Doxorrubicina/uso terapéutico , Ácido Hialurónico/química , Nanopartículas , Neoplasias Ováricas/tratamiento farmacológico , Animales , Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Femenino , Humanos , Imagen por Resonancia Magnética , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA