Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
NPJ Vaccines ; 9(1): 187, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39394212

RESUMEN

The G protein expressed on the surface of respiratory syncytial virus (RSV) is important for adhesion to host cells and as a vaccine target antigen. The corresponding vaccines can effectively eliminate RSV. However, they exacerbate pulmonary immunopathology including eosinophilic infiltration in the lungs after an RSV challenge in animal models, raising concerns about enhanced respiratory disease (ERD); thus, approaches that mitigate these effects are urgently needed. Herein, we aimed to examine the mechanisms of G protein vaccine-induced ERD in mice, using recombinant G protein as a vaccine antigen. After the RSV challenge, G protein-vaccinated mice exhibited lung weight gain, lung tissue damage, and increased infiltration of eosinophils, neutrophils, and CD4+ T cells into the lungs. We set lung weight gain as the endpoint for ERD and examined the impact of each infiltrating cell on lung weight gain. We observed that CD4+ T cells, but not eosinophils or neutrophils, that infiltrate the lungs are responsible for lung weight gain. In addition, T helper 2 cell-mediated IL-13 induced mucin hypersecretion and lung weight gain. Mucin hypersecretion may contribute to weight gain in the lungs. In conclusion, our results indicate a novel mechanism of G protein vaccine-induced ERD via IL-13 and mucin hypersecretion, which could lead to the development of safe G protein vaccines and the elucidation of the causes of ERD associated with other vaccines.

2.
Mol Pharm ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324825

RESUMEN

Lipid nanoparticle-encapsulated mRNA (mRNA-LNP) vaccines have been approved for use to combat coronavirus disease 2019 (COVID-19). The mRNA-LNPs contain PEG-conjugated lipids. Clinical studies have reported that mRNA-LNPs induce the production of anti-PEG antibodies, but the anti-PEG antibodies do not affect the production of neutralizing antibodies. However, the detailed influence of anti-PEG antibodies on mRNA-LNP vaccines remains unclear. Therefore, in this study, we prepared ovalbumin (OVA) as a model antigen-encoding mRNA-loaded LNP (mRNA-OVA-LNP), and we determined whether anti-PEG antibodies could affect the antigen-specific immune response of mRNA-OVA-LNP vaccination in mice pretreated with PEG-modified liposomes to induce the production of anti-PEG antibodies. After intramuscular (i.m.) injection of the mRNA-LNP, the anti-PEG antibodies did not change the expression of protein or induction of cytokine and cellular immune response but did slightly increase the induction of antigen-specific antibodies. Furthermore, repeated mRNA-LNP i.m. injection induced the production of anti-PEG IgM and anti-PEG IgG. Our results suggest that mRNA-LNP induces the production of anti-PEG antibodies, but the priming of the antigen-specific immune response of mRNA-LNP vaccination is not notably affected by anti-PEG antibodies.

3.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038133

RESUMEN

Intranasal vaccines are anticipated to be powerful tools for combating many infectious diseases, including SARS-CoV-2, because they induce not only systemic immunity but also mucosal immunity at the site of initial infection. However, they are generally inefficient in inducing an antigen-specific immune response without adjuvants. Here, we developed an adjuvant-free intranasal vaccine platform that utilizes the preexisting immunity induced by previous infection or vaccination to enhance vaccine effectiveness. We made RBD-HA, a fusion of the receptor-binding domain (RBD) of spike derived from SARS-CoV-2 as a vaccine target with HA derived from influenza A virus (IAV) as a carrier protein. Intranasal immunization of previously IAV-infected mice with RBD-HA without an adjuvant elicited robust production of RBD-specific systemic IgG and mucosal IgA by utilizing both HA-specific preexisting IgG and CD4+ T cells. Consequently, the mice were efficiently protected from SARS-CoV-2 infection. Additionally, we demonstrated the high versatility of this intranasal vaccine platform by assessing various vaccine antigens and preexisting immunity associated with a variety of infectious diseases. The results of this study suggest the promising potential of this intranasal vaccine platform to address problems associated with intranasal vaccines.


Asunto(s)
Enfermedades Transmisibles , Virus de la Influenza A , Vacunas contra la Influenza , Animales , Ratones , Hemaglutininas , Anticuerpos Antivirales , Inmunización , Vacunación , Adyuvantes Inmunológicos/farmacología , Inmunidad Mucosa , Virus de la Influenza A/genética , Inmunoglobulina G
4.
Biochem Biophys Res Commun ; 686: 149143, 2023 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-37926041

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of severe respiratory illness worldwide, particularly in infants and older adults. Vaccines targeting the fusion glycoprotein (F protein) -one of the surface antigens of RSV- are highly effective in preventing RSV-associated severe lower respiratory tract disease. However, the efficacy of these vaccines against upper respiratory tract challenge needs improvement. Here, we aimed to examine the efficacy of F protein vaccines with or without CpG oligodeoxynucleotide (CpG ODN) as an adjuvant in the upper and lower respiratory tracts in mice. F + CpG ODN induced higher levels of F-specific IgG than that induced by F alone; however, levels of neutralizing antibodies did not increase compared to those induced by F alone. F + CpG ODN induced T helper 1 (Th1) cells while F alone induced T helper 2 (Th2) cells. Moreover, F + CpG ODN improved the protection against RSV challenge in the upper respiratory tract compared to F alone, which was largely dependent on CD4+ T cells. Meanwhile, both F + CpG ODN and F alone protected the lower respiratory tract. In conclusion, we demonstrated that induction of F-specific Th1 cells is an effective strategy to prevent RSV challenge in the upper respiratory tract in F protein vaccines. These data support the development of novel F protein vaccines.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Vacunas , Ratones , Humanos , Animales , Anciano , Infecciones por Virus Sincitial Respiratorio/prevención & control , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Células TH1 , Nariz , Oligodesoxirribonucleótidos , Ratones Endogámicos BALB C
5.
Front Immunol ; 14: 1282016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38169867

RESUMEN

Introduction: Respiratory syncytial virus (RSV) vaccines targeting the fusion glycoprotein (F protein) are highly effective clinically in preventing RSV challenges. The attachment glycoprotein (G protein) is a potentially effective vaccine antigen candidate, as it is important for cell adhesion during infection. However, vaccine-associated enhanced diseases in mice, such as eosinophilic lung inflammation following RSV challenge, are a concern with G protein vaccines. This study aimed to design an effective G protein vaccine with enhanced safety and efficacy by evaluating the efficacy and adverse reactions of vaccines composed of different recombinant G proteins and adjuvants in mice. Methods: Mice were subcutaneously immunized with glycosylated G protein expressed in mammalian cells (mG), non-glycosylated G protein expressed in Escherichia coli (eG), or F protein with or without aluminum salts (alum), CpG oligodeoxynucleotide (CpG ODN), or AddaVax. After vaccination, the levels of G-specific antibody and T-cell responses were measured. The immunized mice were challenged with RSV and examined for the viral load in the lungs and nasal turbinates, lung-infiltrating cells, and lung pathology. Results: mG with any adjuvant was ineffective at inducing G-specific antibodies and had difficulty achieving both protection against RSV challenge and eosinophilia suppression. In particular, mG+CpG ODN induced G-specific T helper 1 (Th1) cells but only a few G-specific antibodies and did not protect against RSV challenge. However, eG+CpG ODN induced high levels of G-specific antibodies and Th1 cells and protected against RSV challenge without inducing pulmonary inflammation. Moreover, the combination vaccine of eG+F+CpG ODN showed greater protection against upper respiratory tract RSV challenge than using each single antigen vaccine alone. Discussion: These results indicate that the efficacy of recombinant G protein vaccines can be enhanced without inducing adverse reactions by using appropriate antigens and adjuvants, and their efficacy is further enhanced in the combination vaccine with F protein. These data provide valuable information for the clinical application of G protein vaccines.


Asunto(s)
Eosinofilia , Neumonía , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Vacunas , Ratones , Animales , Anticuerpos Antivirales , Proteínas Virales de Fusión , Adyuvantes Inmunológicos , Proteínas Recombinantes , Eosinofilia/prevención & control , Proteínas de Unión al GTP , Oligodesoxirribonucleótidos , Glicoproteínas , Vacunas Combinadas , Mamíferos
6.
J Immunol ; 208(3): 642-650, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34996840

RESUMEN

TNF receptor-associated factor 5 (TRAF5) restrains early signaling activity of the IL-6 receptor in naive CD4+ T cells by interacting with the shared gp130 chain, although TRAF5 was initially discovered as a cytoplasmic adaptor protein to activate signaling mediated by TNF receptor family molecules. This leads to the question of whether TRAF5 limits signaling via the receptor for IL-27, which is composed of gp130 and WSX-1. The aim of this study is to clarify the role of TRAF5 in IL-27 receptor signaling and to understand the differential role of TRAF5 on cytokine receptor signaling. We found that Traf5 -/- CD4+ T cells displayed significantly higher levels of phosphorylated STAT1 and STAT-regulated genes Socs3 and Tbx21, as early as 1 h after IL-27 exposure when compared with Traf5 +/+ CD4+ T cells. Upon IL-27 and TCR signals, the Traf5 deficiency significantly increased the induction of IL-10 and promoted the proliferation of CD4+ T cells. Traf5 -/- mice injected with IL-27 displayed significantly enhanced delayed-type hypersensitivity responses, demonstrating that TRAF5 works as a negative regulator for IL-27 receptor signaling. In contrast, IL-2 and proliferation mediated by glucocorticoid-induced TNF receptor-related protein (GITR) and TCR signals were significantly decreased in Traf5 -/- CD4+ T cells, confirming that TRAF5 works as a positive regulator for cosignaling via GITR. Collectively, our results demonstrate that TRAF5 reciprocally controls signals mediated by the IL-27 receptor and GITR in CD4+ T cells and suggest that the regulatory activity of TRAF5 in gp130 is distinct from that in TNF receptor family molecules in a T cell.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Receptor gp130 de Citocinas/metabolismo , Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Interleucina/metabolismo , Factor 5 Asociado a Receptor de TNF/metabolismo , Animales , Proliferación Celular , Hipersensibilidad Tardía/inmunología , Interleucina-10/inmunología , Interleucinas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/inmunología , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteínas de Dominio T Box/metabolismo , Factor 5 Asociado a Receptor de TNF/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA