Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Extracell Vesicles ; 13(5): e12431, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711329

RESUMEN

The budding yeast Saccharomyces cerevisiae is a proven model organism for elucidating conserved eukaryotic biology, but to date its extracellular vesicle (EV) biology is understudied. Here, we show yeast transmit information through the extracellular medium that increases survival when confronted with heat stress and demonstrate the EV-enriched samples mediate this thermotolerance transfer. These samples contain vesicle-like particles that are exosome-sized and disrupting exosome biogenesis by targeting endosomal sorting complexes required for transport (ESCRT) machinery inhibits thermotolerance transfer. We find that Bro1, the yeast ortholog of the human exosome biomarker ALIX, is present in EV samples, and use Bro1 tagged with green fluorescent protein (GFP) to track EV release and uptake by endocytosis. Proteomics analysis reveals that heat shock protein 70 (HSP70) family proteins are enriched in EV samples that provide thermotolerance. We confirm the presence of the HSP70 ortholog stress-seventy subunit A2 (Ssa2) in EV samples and find that mutant yeast cells lacking SSA2 produce EVs but they fail to transfer thermotolerance. We conclude that Ssa2 within exosomes shared between yeast cells contributes to thermotolerance. Through this work, we advance Saccharomyces cerevisiae as an emerging model organism for elucidating molecular details of eukaryotic EV biology and establish a role for exosomes in heat stress and proteostasis that seems to be evolutionarily conserved.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Exosomas , Vesículas Extracelulares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Termotolerancia , Saccharomyces cerevisiae/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Exosomas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Proteómica/métodos
2.
Sci Rep ; 14(1): 11695, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778133

RESUMEN

The agricultural fungicide cymoxanil (CMX) is commonly used in the treatment of plant pathogens, such as Phytophthora infestans. Although the use of CMX is widespread throughout the agricultural industry and internationally, the exact mechanism of action behind this fungicide remains unclear. Therefore, we sought to elucidate the biocidal mechanism underlying CMX. This was accomplished by first performing a large-scale chemical-genomic screen comprising the 4000 haploid non-essential gene deletion array of the yeast Saccharomyces cerevisiae. We found that gene families related to de novo purine biosynthesis and ribonucleoside synthesis were enriched in the presence of CMX. These results were confirmed through additional spot-test and colony counting assays. We next examined whether CMX affects RNA biosynthesis. Using qRT-PCR and expression assays, we found that CMX appears to target RNA biosynthesis possibly through the yeast dihydrofolate reductase (DHFR) enzyme Dfr1. To determine whether DHFR is a target of CMX, we performed an in-silico molecular docking assay between CMX and yeast, human, and P. infestans DHFR. The results suggest that CMX directly interacts with the active site of all tested forms of DHFR using conserved residues. Using an in vitro DHFR activity assay we observed that CMX inhibits DHFR activity in a dose-dependent relationship.


Asunto(s)
Fungicidas Industriales , Simulación del Acoplamiento Molecular , Proteínas de Saccharomyces cerevisiae , Tetrahidrofolato Deshidrogenasa , Humanos , Antagonistas del Ácido Fólico/farmacología , Fungicidas Industriales/farmacología , ARN/biosíntesis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/genética
3.
Biology (Basel) ; 13(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38534408

RESUMEN

Maintaining translation fidelity is a critical step within the process of gene expression. It requires the involvement of numerous regulatory elements to ensure the synthesis of functional proteins. The efficient termination of protein synthesis can play a crucial role in preserving this fidelity. Here, we report on investigating a protein of unknown function, YNR069C (also known as BSC5), for its activity in the process of translation. We observed a significant increase in the bypass of premature stop codons upon the deletion of YNR069C. Interestingly, the genomic arrangement of this ORF suggests a compatible mode of expression reliant on translational readthrough, incorporating the neighboring open reading frame. We also showed that the deletion of YNR069C results in an increase in the rate of translation. Based on our results, we propose that YNR069C may play a role in translation fidelity, impacting the overall quantity and quality of translation. Our genetic interaction analysis supports our hypothesis, associating the role of YNR069C to the regulation of protein synthesis.

4.
FASEB J ; 38(5): e23439, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38416461

RESUMEN

Reactive oxygen species (ROS) are among the most severe types of cellular stressors with the ability to damage essential cellular biomolecules. Excess levels of ROS are correlated with multiple pathophysiological conditions including neurodegeneration, diabetes, atherosclerosis, and cancer. Failure to regulate the severely imbalanced levels of ROS can ultimately lead to cell death, highlighting the importance of investigating the molecular mechanisms involved in the detoxification procedures that counteract the effects of these compounds in living organisms. One of the most abundant forms of ROS is H2 O2 , mainly produced by the electron transport chain in the mitochondria. Numerous genes have been identified as essential to the process of cellular detoxification. Yeast YAP1, which is homologous to mammalian AP-1 type transcriptional factors, has a key role in oxidative detoxification by upregulating the expression of antioxidant genes in yeast. The current study reveals novel functions for COX5A and NPR3 in H2 O2 -induced stress by demonstrating that their deletions result in a sensitive phenotype. Our follow-up investigations indicate that COX5A and NPR3 regulate the expression of YAP1 through an alternative mode of translation initiation. These novel gene functions expand our understanding of the regulation of gene expression and defense mechanism of yeast against oxidative stress.


Asunto(s)
Aterosclerosis , Proteínas de Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/genética , Peróxido de Hidrógeno/farmacología , Especies Reactivas de Oxígeno , Antioxidantes , Mamíferos , Factores de Transcripción/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Genes (Basel) ; 14(6)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37372372

RESUMEN

Leveraging computation in the development of peptide therapeutics has garnered increasing recognition as a valuable tool to generate novel therapeutics for disease-related targets. To this end, computation has transformed the field of peptide design through identifying novel therapeutics that exhibit enhanced pharmacokinetic properties and reduced toxicity. The process of in-silico peptide design involves the application of molecular docking, molecular dynamics simulations, and machine learning algorithms. Three primary approaches for peptide therapeutic design including structural-based, protein mimicry, and short motif design have been predominantly adopted. Despite the ongoing progress made in this field, there are still significant challenges pertaining to peptide design including: enhancing the accuracy of computational methods; improving the success rate of preclinical and clinical trials; and developing better strategies to predict pharmacokinetics and toxicity. In this review, we discuss past and present research pertaining to the design and development of in-silico peptide therapeutics in addition to highlighting the potential of computation and artificial intelligence in the future of disease therapeutics.


Asunto(s)
Inteligencia Artificial , Plumas , Animales , Simulación del Acoplamiento Molecular , Plumas/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/química , Proteínas/metabolismo
6.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675300

RESUMEN

Lithium chloride (LiCl) has been widely researched and utilized as a therapeutic option for bipolar disorder (BD). Several pathways, including cell signaling and signal transduction pathways in mammalian cells, are shown to be regulated by LiCl. LiCl can negatively control the expression and activity of PGM2, a phosphoglucomutase that influences sugar metabolism in yeast. In the presence of galactose, when yeast cells are challenged by LiCl, the phosphoglucomutase activity of PGM2p is decreased, causing an increase in the concentration of toxic galactose metabolism intermediates that result in cell sensitivity. Here, we report that the null yeast mutant strains DBP7∆ and YRF1-6∆ exhibit increased LiCl sensitivity on galactose-containing media. Additionally, we demonstrate that DBP7 and YRF1-6 modulate the translational level of PGM2 mRNA, and the observed alteration in translation seems to be associated with the 5'-untranslated region (UTR) of PGM2 mRNA. Furthermore, we observe that DBP7 and YRF1-6 influence, to varying degrees, the translation of other mRNAs that carry different 5'-UTR secondary structures.


Asunto(s)
Cloruro de Litio , Proteínas de Saccharomyces cerevisiae , Cloruro de Litio/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo , Galactosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/metabolismo
7.
PLoS Genet ; 18(10): e1010446, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215320

RESUMEN

Diverse physiology relies on receptor and transporter protein down-regulation and degradation mediated by ESCRTs. Loss-of-function mutations in human ESCRT genes linked to cancers and neurological disorders are thought to block this process. However, when homologous mutations are introduced into model organisms, cells thrive and degradation persists, suggesting other mechanisms compensate. To better understand this secondary process, we studied degradation of transporter (Mup1) or receptor (Ste3) proteins when ESCRT genes (VPS27, VPS36) are deleted in Saccharomyces cerevisiae using live-cell imaging and organelle biochemistry. We find that endocytosis remains intact, but internalized proteins aberrantly accumulate on vacuolar lysosome membranes within cells. Here they are sorted for degradation by the intralumenal fragment (ILF) pathway, constitutively or when triggered by substrates, misfolding or TOR activation in vivo and in vitro. Thus, the ILF pathway functions as fail-safe layer of defense when ESCRTs disregard their clients, representing a two-tiered system that ensures degradation of surface polytopic proteins.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Humanos , Proteolisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacuolas/genética , Vacuolas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Portadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA