Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 41(10): 4446-4454, 2020 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-33124376

RESUMEN

Presently, there are a few studies on the measurement of industrial organic solvents in China. To determine the content and species of volatile organic compounds (VOCs) in industrial organic solvents and to provide the emission factors of organic solvents, the Chinese wood and automotive coatings, which accounted for the largest proportion of production in the world, were investigated. Coating samples were obtained by sampling from companies and buying from markets, and were measured in accordance with the domestic standard testing methods for coatings. The content and composition spectrum of VOCs in the coatings were determined, and the ozone formation potential (OFP) was then calculated. The results showed that for wood coatings, the average content of the VOCs in solvent-based, water-based, and ultra-violet (UV) coatings were 37.28%, 9.88%, and 18.02%, respectively. For automotive coatings, the average content of the VOCs in water-based original equipment manufacturer (OEM) coating, solvent-based OEM coating, water-based refinishing coating, and solvent-based refinishing coating were 15.06%, 59.90%, 11.79%, and 54.50%, respectively. The content of the VOCs in different types of coatings varied substantially. The main components and OFP contributors were alcohols and ethers for water-based coatings, benzene series and esters for solvent-based coatings, and esters, alcohols, and ethers for UV coatings. The average value of the coating samples could meet the current mandatory national standards, but 12% of the solvent-based wood coating samples and 42% of the solvent-based OEM coating samples did not meet the standards. In addition, except for the benzene series of the water-based wood coatings, the contents of harmful substances in other coating samples were up to the standards.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles/análisis , Madera/química
2.
Huan Jing Ke Xue ; 40(12): 5240-5249, 2019 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-31854594

RESUMEN

The furniture manufacturing industry is a typical industry with high pollution, low added value, relatively outdated technology and low levels of pollution control. The process of furniture manufacturing uses a large number of paints and adhesives, which emit a great quantity of volatile organic compounds (VOCs). The furniture manufacturing industry is a key industry for the control of VOCs in China. The VOCs emission characteristics and environmental impact of the furniture manufacturing industry has been studied in this work, which could be helpful for the Chinese government when formulating VOCs pollution control policy for this industry. In this study, a typical furniture manufacturing enterprise was chosen as the object. The emission concentration level and source profile of VOCs in a typical enterprise was obtained, and an assessment of the environmental impact of furniture manufacturing was developed. The results showed that the concentration of VOCs in the workshop ranged from 9.18 to 181.58 mg·m-3, the concentration of VOCs in the stack was 30.64-155.94 mg·m-3, and the treatment efficiency was 7.43%-67.14%. The main species of VOCs in the workshop were aromatic hydrocarbons, esters, and aldehydes and ketones; the main species of VOCs in the stack are esters and aromatic hydrocarbons, followed by alkanes, and the main VOCs in the industry are sec-butyl acetate, toluene, m-xylene, methylal and ethylbenzene. The average ozone generation potential (OFP) of workshop and stack VOCs was 258.01 and 289.14 mg·m-3, respectively, and the average secondary organic aerosol generation potential (SOAFP) of workshop and stack VOCs was 148.66 and 165.31 mg·m-3, respectively. The most important contribution to the OFP and SOAFP in each emission sector is aromatic hydrocarbons. The OFP and SOAFP in the edge-sealing workshop are large and the VOCs should be controlled. The main malodorous substances at the shop boundary are sec-butyl acetate, m-xylene, butyl acetate, p-xylene, ethylbenzene, 1-ethyl-3-methylbenzene, o-xylene, and toluene; the VOCs at the factory boundary produce almost no odor pollution. Targeted enhanced control of aromatic hydrocarbons and esters should be adopted to achieve effective emission reduction of VOCs in furniture manufacturing.

3.
Huan Jing Ke Xue ; 39(8): 3544-3551, 2018 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-29998659

RESUMEN

China implemented the emission allowance and allocation strategy in 2016 to achieve effective control of volatile organic compounds (VOCs). An inventory of VOCs emissions for 2015 and future emissions for 2020 were developed and predicted, respectively, using emission factors and regression analysis. The results showed that anthropogenic VOCs emission in 2015 was 31117.0 kt. VOCs emission in 2020 under the business-as-usual scenario is predicted to be 41737.2 kt, an increase of 34.13% from that in 2015. Based on the Outline of the 13th Five-Year Plan, a total amount control target and pollution reduction task of about 28005.3 kt and 13731.9 kt, respectively, were proposed. Additionally, three control scenarios, i.e., implementing VOCs emission reduction strategies in all the key areas, in all the key industries, and in the key industries of the key areas, were established for the 13th Five-Year Plan using a scenario analysis method. The results showed that some differences exist between the potential mitigation of VOCs emissions and the emission reduction target for the three control scenarios, it is difficult to realize the emission allowance target. It is necessary to devote greater efforts to control VOCs. Moreover, reducing emissions of VOCs by implementing large-scale control projects is recommended. Further, regulation of VOC emissions in key areas and industries should be emphasized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA