Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Pathogens ; 13(9)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39338923

RESUMEN

We used whole genome sequencing (WGS) as an epidemiologic surveillance tool to elucidate the transmission dynamics of Shiga toxin-producing Escherichia coli (STEC) strains along the beef production chain in South Africa. Isolates were obtained from a cattle farm, abattoirs and retail outlets. Isolates were analysed using WGS on a MiSeq platform (Illumina, San Diego, CA, USA) and phylogenetic analysis was carried out. Of the 85 isolates, 39% (33) carried the stx gene and 61% (52) had lost the stx gene. The prevalence of stx subtypes was as follows; stx1a 55% (18/33), stx1b 52% (17/33), stx2a 55% (18/33), stx2b 27% (9/33), stx2dB 30% (10/33) and stx2d1A 15% (5/33). Thirty-five different serogenotypes were detected, of which 65% (56) were flagellar H-antigens and 34% (29) were both O-antigens and flagellar H-antigens. We identified 50 different sequence types (STs), and only nine of the isolates were assigned to three different clonal complexes. Core genome phylogenetic analysis revealed genetic relatedness, and isolates clustered mainly according to their STs and serogenotypes regardless of stx subtypes. This study provides evidence of horizontal transmission and recirculation of STEC strains in Gauteng province and demonstrates that every stage of the beef production chain plays a significant role in STEC entry into the food chain.

3.
PLoS Negl Trop Dis ; 18(2): e0011898, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38329945

RESUMEN

Chagas disease (ChD), caused by infection with the flagellated protozoan, Trypanosoma cruzi, has a complicated transmission cycle with many infection routes. These include vector-borne (via the triatomine (reduviid bug) vector defecating into a skin abrasion, usually following a blood meal), transplacental transmission, blood transfusion, organ transplant, laboratory accident, and foodborne transmission. Foodborne transmission may occur due to ingestion of meat or blood from infected animals or from ingestion of other foods (often fruit juice) contaminated by infected vectors or secretions from reservoir hosts. Despite the high disease burden associated with ChD, it was omitted from the original World Health Organization estimates of foodborne disease burden that were published in 2015. As these estimates are currently being updated, this review presents arguments for including ChD in new estimates of the global burden of foodborne disease. Preliminary calculations suggest a burden of at least 137,000 Disability Adjusted Life Years, but this does not take into account the greater symptom severity associated with foodborne transmission. Thus, we also provide information regarding the greater health burden in endemic areas associated with foodborne infection compared with vector-borne infection, with higher mortality and more severe symptoms. We therefore suggest that it is insufficient to use source attribution alone to determine the foodborne proportion of current burden estimates, as this may underestimate the higher disability and mortality associated with the foodborne infection route.


Asunto(s)
Enfermedad de Chagas , Enfermedades Transmitidas por los Alimentos , Triatoma , Trypanosoma cruzi , Animales , Enfermedad de Chagas/epidemiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Costo de Enfermedad
5.
Clin Infect Dis ; 77(Suppl 7): S597-S607, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38118013

RESUMEN

Antimicrobial resistance (AMR) poses an immediate danger to global health. If unaddressed, the current upsurge in AMR threatens to reverse the achievements in reducing the infectious disease-associated mortality and morbidity associated with antimicrobial treatment. Consequently, there is an urgent need for strategies to prevent or slow the progress of AMR. Vaccines potentially contribute both directly and indirectly to combating AMR. Modeling studies have indicated significant gains from vaccination in reducing AMR burdens for specific pathogens, reducing mortality/morbidity, and economic loss. However, quantifying the real impact of vaccines in these reductions is challenging because many of the study designs used to evaluate the contribution of vaccination programs are affected by significant background confounding, and potential selection and information bias. Here, we discuss challenges in assessing vaccine impact to reduce AMR burdens and suggest potential approaches for vaccine impact evaluation nested in vaccine trials.


Asunto(s)
Antibacterianos , Vacunas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Vacunación , Salud Global
6.
Nat Commun ; 14(1): 7715, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001075

RESUMEN

Shigellosis, a leading cause of diarrhoeal mortality and morbidity globally, predominantly affects children under five years of age living in low- and middle-income countries. While whole genome sequence analysis (WGSA) has been effectively used to further our understanding of shigellosis epidemiology, antimicrobial resistance, and transmission, it has been under-utilised in sub-Saharan Africa. In this study, we applied WGSA to large sub-sample of surveillance isolates from South Africa, collected from 2011 to 2015, focussing on Shigella flexneri 2a and Shigella sonnei. We find each serotype is epidemiologically distinct. The four identified S. flexneri 2a clusters having distinct geographical distributions, and antimicrobial resistance (AMR) and virulence profiles, while the four sub-Clades of S. sonnei varied in virulence plasmid retention. Our results support serotype specific lifestyles as a driver for epidemiological differences, show AMR is not required for epidemiological success in S. flexneri, and that the HIV epidemic may have promoted Shigella population expansion.


Asunto(s)
Antiinfecciosos , Disentería Bacilar , Shigella , Niño , Humanos , Preescolar , Disentería Bacilar/epidemiología , Sudáfrica/epidemiología , Shigella/genética , Shigella flexneri/genética , Genómica
7.
Elife ; 122023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37697804

RESUMEN

Background: The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). Methods: This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. Results: Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal 'sentinel' surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (≥3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. Conclusions: The consortium's aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies. Funding: No specific funding was awarded for this meta-analysis. Coordinators were supported by fellowships from the European Union (ZAD received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 845681), the Wellcome Trust (SB, Wellcome Trust Senior Fellowship), and the National Health and Medical Research Council (DJI is supported by an NHMRC Investigator Grant [GNT1195210]).


Salmonella Typhi (Typhi) is a type of bacteria that causes typhoid fever. More than 110,000 people die from this disease each year, predominantly in areas of sub-Saharan Africa and South Asia with limited access to safe water and sanitation. Clinicians use antibiotics to treat typhoid fever, but scientists worry that the spread of antimicrobial-resistant Typhi could render the drugs ineffective, leading to increased typhoid fever mortality. The World Health Organization has prequalified two vaccines that are highly effective in preventing typhoid fever and may also help limit the emergence and spread of resistant Typhi. In low resource settings, public health officials must make difficult trade-off decisions about which new vaccines to introduce into already crowded immunization schedules. Understanding the local burden of antimicrobial-resistant Typhi and how it is spreading could help inform their actions. The Global Typhoid Genomics Consortium analyzed 13,000 Typhi genomes from 110 countries to provide a global overview of genetic diversity and antimicrobial-resistant patterns. The analysis showed great genetic diversity of the different strains between countries and regions. For example, the H58 Typhi variant, which is often drug-resistant, has spread rapidly through Asia and Eastern and Southern Africa, but is less common in other regions. However, distinct strains of other drug-resistant Typhi have emerged in other parts of the world. Resistance to the antibiotic ciprofloxacin was widespread and accounted for over 85% of cases in South Africa. Around 70% of Typhi from Pakistan were extensively drug-resistant in 2020, but these hard-to-treat variants have not yet become established elsewhere. Variants that are resistant to both ciprofloxacin and ceftriaxone have been identified, and azithromycin resistance has also appeared in several different variants across South Asia. The Consortium's analyses provide valuable insights into the global distribution and transmission patterns of drug-resistant Typhi. Limited genetic data were available fromseveral regions, but data from travel-associated cases helped fill some regional gaps. These findings may help serve as a starting point for collective sharing and analyses of genetic data to inform local public health action. Funders need to provide ongoing supportto help fill global surveillance data gaps.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Humanos , Salmonella typhi/genética , Fiebre Tifoidea/epidemiología , Antibacterianos/farmacología , Viaje , Farmacorresistencia Bacteriana/genética , Ciprofloxacina
8.
9.
Lancet Glob Health ; 11(6): e807-e808, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37202009

Asunto(s)
Vacunación , Humanos
12.
Access Microbiol ; 4(7): acmi000371, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36003217

RESUMEN

Salmonella Infantis is presenting an increasing risk to public health. Of particular concern are the reports of pESI, a multidrug resistance (MDR) encoding megaplasmid, in isolates from multiple countries, but little is known about its presence or diversity in South Africa. Whole genome sequences of 387 S. Infantis isolates from South Africa (2004-2020) were analysed for genetic phylogeny, recombination frequency, antimicrobial resistance (AMR) determinants, plasmid presence and overall gene content. The population structure of South African S. Infantis was substantially different to S. Infantis reported elsewhere; only two thirds of isolates belonged to eBG31, while the remainder were identified as eBG297, a much rarer group globally. Significantly higher levels of recombination were observed in the eBG297 isolates, which was associated with the presence of prophages. The majority of isolates were putatively susceptible to antimicrobials (335/387) and lacked any plasmids (311/387); the megaplasmid pESI was present in just one isolate. A larger proportion of eBG31 isolates, 19% (49/263), contained at least one AMR determinant, compared to eBG297 at 2% (3/124). Comparison of the pan-genomes of isolates from either eBG identified 943 genes significantly associated with eBG, with 43 found exclusively in eBG31 isolates and 34 in eBG297 isolates. This, along with the single nucleotide polymorphism distance and difference in resistance profiles, suggests that eBG31 and eBG297 isolates occupy different niches within South Africa. If antibiotic-resistant S. Infantis emerges in South Africa, probably through the spread of the pESI plasmid, treatment of this infection would be compromised.

13.
Prev Vet Med ; 205: 105681, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35691135

RESUMEN

In South Africa, there is a shortage of epidemiologic data on Shiga toxin-producing Escherichia coli (STEC) in the beef production chain. This study was conducted to characterise STEC isolates originating from three studies conducted in a cattle feedlot, beef abattoirs and retail outlets in Gauteng province, South Africa. Polymerase chain reaction was used to detect virulence genes, the Epsilometer test to assess antimicrobial susceptibility, pulsed-field gel electrophoresis (PFGE) to investigate genetic relatedness of isolates, and conventional serotyping for phenotypic identification. Amongst the 86 STEC isolates, the eaeA gene was detected in 20 (23%), and 26 different serogroups were identified, including the clinically important O8, O174, O2, 020 and O117. The majority of the isolates (95%; 82/86) exhibited resistance to one or more antimicrobial agents, and 30 of the isolates (35%) exhibited multi-drug resistance (MDR), being resistant to at least three antimicrobial classes. The PFGE patterns showed a highly diverse but related STEC population, with 45 distinct patterns and evidence of horizontal transmission along the beef production chain. This is significant because it demonstrates continual environmental contamination and risk of contamination along the beef production chain and the food chain. To our knowledge, this is the first study that provides evidence of horizontal transmission of STEC along the beef production chain in South Africa. This epidemiological information could facilitate the development of a proactive strategy for reducing potential foodborne outbreaks and transmission of antimicrobial resistant pathogens in the food chain.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Mataderos , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Electroforesis en Gel de Campo Pulsado/veterinaria , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Serotipificación/veterinaria , Escherichia coli Shiga-Toxigénica/genética , Sudáfrica/epidemiología
14.
Lancet Infect Dis ; 22(8): 1097-1098, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35588756
16.
Lancet Infect Dis ; 22(5): e130-e142, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34914923

RESUMEN

Diarrhoea is an important cause of morbidity and mortality in children from low-income and middle-income countries (LMICs), despite advances in the management of this condition. Understanding of the causes of diarrhoea in children in LMICs has advanced owing to large multinational studies and big data analytics computing the disease burden, identifying the important variables that have contributed to reducing this burden. The advent of the mobile phone has further enabled the management of childhood diarrhoea by providing both clinical support to health-care workers (such as diagnosis and management) and communicating preventive measures to carers (such as breastfeeding and vaccination reminders) in some settings. There are still challenges in addressing the burden of diarrhoeal diseases, such as incomplete patient information, underrepresented geographical areas, concerns about patient confidentiality, unequal partnerships between study investigators, and the reactive approach to outbreaks. A transparent approach to promote the inclusion of researchers in LMICs could address partnership imbalances. A big data umbrella encompassing cloud-based centralised databases to analyse interlinked human, animal, agricultural, social, and climate data would provide an informative solution to the development of appropriate management protocols in LMICs.


Asunto(s)
Países en Desarrollo , Telemedicina , Macrodatos , Diarrea/prevención & control , Diarrea/terapia , Humanos , Pobreza
18.
BMJ Glob Health ; 6(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34341020

RESUMEN

BACKGROUND: Invasive non-typhoidal Salmonella (iNTS) is one of the leading causes of bacteraemia in sub-Saharan Africa. We aimed to provide a better understanding of the genetic characteristics and transmission patterns associated with multi-drug resistant (MDR) iNTS serovars across the continent. METHODS: A total of 166 iNTS isolates collected from a multi-centre surveillance in 10 African countries (2010-2014) and a fever study in Ghana (2007-2009) were genome sequenced to investigate the geographical distribution, antimicrobial genetic determinants and population structure of iNTS serotypes-genotypes. Phylogenetic analyses were conducted in the context of the existing genomic frameworks for various iNTS serovars. Population-based incidence of MDR-iNTS disease was estimated in each study site. RESULTS: Salmonella Typhimurium sequence-type (ST) 313 and Salmonella Enteritidis ST11 were predominant, and both exhibited high frequencies of MDR; Salmonella Dublin ST10 was identified in West Africa only. Mutations in the gyrA gene (fluoroquinolone resistance) were identified in S. Enteritidis and S. Typhimurium in Ghana; an ST313 isolate carrying blaCTX-M-15 was found in Kenya. International transmission of MDR ST313 (lineage II) and MDR ST11 (West African clade) was observed between Ghana and neighbouring West African countries. The incidence of MDR-iNTS disease exceeded 100/100 000 person-years-of-observation in children aged <5 years in several West African countries. CONCLUSIONS: We identified the circulation of multiple MDR iNTS serovar STs in the sampled sub-Saharan African countries. Investment in the development and deployment of iNTS vaccines coupled with intensified antimicrobial resistance surveillance are essential to limit the impact of these pathogens in Africa.


Asunto(s)
Preparaciones Farmacéuticas , Salmonella typhimurium , Niño , Genómica , Humanos , Kenia , Filogenia , Salmonella typhimurium/genética
19.
Front Psychiatry ; 12: 617751, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34140898

RESUMEN

The interplay between tuberculosis and depression has been problematic since the humoralists. Over the centuries similarities in disease management have transpired. With the advent of isoniazid chemotherapy, transformation of tuberculosis patients from morbidly depressive to euphoric was noted. Isoniazid was thereafter widely prescribed for depression: hepatotoxicity ending its use as an antidepressant in 1961. Isoniazid monotherapy led to the emergence of drug resistant tuberculosis, stimulating new drug development. Vastly increased investment into antidepressants ensued thereafter while investment in new drugs for tuberculosis lagged. In the 21st century, both diseases independently contribute significantly to global disease burdens: renewed convergence and the resultant syndemic is detrimental to both patient groups. Ending the global tuberculosis epidemic and decreasing the burden of depression and will require multidisciplinary, patient-centered approaches that consider this combined co-morbidity. The emerging era of big data for health, digital interventions and novel and repurposed compounds promise new ways to treat both diseases and manage the syndemic, but absence of clinical structures to support these innovations may derail the treatment programs for both. New policies are urgently required optimizing use of the current advances in healthcare available in the digital era, to ensure that patient-centered care takes cognizance of both diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA