Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Glob Chang Biol ; 27(8): 1572-1586, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33372357

RESUMEN

Tundra dominates two-thirds of the unglaciated, terrestrial Arctic. Although this region has experienced rapid and widespread changes in vegetation phenology and productivity over the last several decades, the specific climatic drivers responsible for this change remain poorly understood. Here we quantified the effect of winter snowpack and early spring temperature conditions on growing season vegetation phenology (timing of the start, peak, and end of the growing season) and productivity of the dominant tundra vegetation communities of Arctic Alaska. We used daily remotely sensed normalized difference vegetation index (NDVI), and daily snowpack and temperature variables produced by SnowModel and MicroMet, coupled physically based snow and meteorological modeling tools, to (1) determine the most important snowpack and thermal controls on tundra vegetation phenology and productivity and (2) describe the direction of these relationships within each vegetation community. Our results show that soil temperature under the snowpack, snowmelt timing, and air temperature following snowmelt are the most important drivers of growing season timing and productivity among Arctic vegetation communities. Air temperature after snowmelt was the most important control on timing of season start and end, with warmer conditions contributing to earlier phenology in all vegetation communities. In contrast, the controls on the timing of peak season and productivity also included snowmelt timing and soil temperature under the snowpack, dictated in part by the snow insulating capacity. The results of this novel analysis suggest that while future warming effects on phenology may be consistent across communities of the tundra biome, warming may result in divergent, community-specific productivity responses if coupled with reduced snow insulating capacity lowers winter soil temperature and potential nutrient cycling in the soil.


Asunto(s)
Ecosistema , Nieve , Alaska , Regiones Árticas , Cambio Climático , Estaciones del Año , Temperatura
2.
Trends Ecol Evol ; 34(10): 885-888, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451305

RESUMEN

Climate change leads to unequal shifts in the phenology of interacting species, such as consumers and their resources, leading to potential phenological mismatches. While studies have investigated how phenological mismatch affects wild populations, we still lack studies and a framework for investigating how phenological mismatch affects ecosystems, particularly nutrient cycling.


Asunto(s)
Cambio Climático , Ecosistema , Estaciones del Año
3.
PLoS One ; 14(3): e0213037, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30865725

RESUMEN

With warmer springs, herbivores migrating to Arctic breeding grounds may experience phenological mismatches between their energy demands and the availability of high quality forage. Yet, how the timing of the start of the season and herbivore arrival influences forage quality is often unknown. In coastal western Alaska, approximately one million migratory geese arrive each spring to breed, where foliar %N and C:N ratios are linked to gosling survival and population growth. We conducted a three-year experiment where we manipulated the start of the growing season using warming chambers and grazing times using captive Pacific black brant (Branta bernicla nigricans) to examine how the timing of these events influences the quality of an important forage species. Our results suggest that grazing timing plays a much greater role than an advanced growing season in determining forage quality. All top models included grazing timing, and suggested that compared to typical grazing timing, early grazing significantly reduced foliar %C by 6% and C:N ratios by 16%, while late goose grazing significantly reduced foliar %N by 15% and increased foliar C:N ratios by 21%. While second-ranking top models included the effect of season, the advanced growing season effect was not significant and only reduced %N by 4%, increased %C by <1%, and increased C:N ratios by 5% compared to an ambient growing season. In summary, in years where geese arrive early, they will consume higher quality forage when they arrive and throughout the season, while in years that geese arrive late they will consume lower quality forage when they arrive and for the remainder of the season. When the growing season starts has only a minor influence on this pattern. Our findings suggest that cues determining migration and arrival times to breeding areas are important factors influencing forage quality for geese in western Alaska.


Asunto(s)
Migración Animal/fisiología , Gansos/fisiología , Animales , Regiones Árticas , Femenino , Modelos Lineales , Masculino , Manantiales Naturales , Estaciones del Año , Humedales
4.
Glob Chang Biol ; 25(1): 277-289, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295398

RESUMEN

The advancement of spring and the differential ability of organisms to respond to changes in plant phenology may lead to "phenological mismatches" as a result of climate change. One potential for considerable mismatch is between migratory birds and food availability in northern breeding ranges, and these mismatches may have consequences for ecosystem function. We conducted a three-year experiment to examine the consequences for CO2 exchange of advanced spring green-up and altered timing of grazing by migratory Pacific black brant in a coastal wetland in western Alaska. Experimental treatments represent the variation in green-up and timing of peak grazing intensity that currently exists in the system. Delayed grazing resulted in greater net ecosystem exchange (NEE) and gross primary productivity (GPP), while early grazing reduced CO2 uptake with the potential of causing net ecosystem carbon (C) loss in late spring and early summer. Conversely, advancing the growing season only influenced ecosystem respiration (ER), resulting in a small increase in ER with no concomitant impact on GPP or NEE. The experimental treatment that represents the most likely future, with green-up advancing more rapidly than arrival of migratory geese, results in NEE changing by 1.2 µmol m-2  s-1 toward a greater CO2 sink in spring and summer. Increased sink strength, however, may be mitigated by early arrival of migratory geese, which would reduce CO2 uptake. Importantly, while the direct effect of climate warming on phenology of green-up has a minimal influence on NEE, the indirect effect of climate warming manifest through changes in the timing of peak grazing can have a significant impact on C balance in northern coastal wetlands. Furthermore, processes influencing the timing of goose migration in the winter range can significantly influence ecosystem function in summer habitats.


Asunto(s)
Migración Animal , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Gansos/fisiología , Herbivoria , Alaska , Animales , Cambio Climático , Estaciones del Año
5.
Environ Manage ; 58(2): 283-96, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27272016

RESUMEN

Federal lands in the United States have been identified as important areas where forests could be managed to enhance carbon storage and help mitigate climate change. However, there has been little work examining the context for decision making for carbon in a multiple-use public land environment, and how science can support decision making. This case study of the San Juan National Forest and the Bureau of Land Management Tres Rios Field Office in southwestern Colorado examines whether land managers in these offices have adequate tools, information, and management flexibility to practice effective carbon stewardship. To understand how carbon was distributed on the management landscape we added a newly developed carbon map for the SJNF-TRFO area based on Landsat TM texture information (Kelsey and Neff in Remote Sens 6:6407-6422. doi: 10.3390/rs6076407 , 2014). We estimate that only about 22 % of the aboveground carbon in the SJNF-TRFO is in areas designated for active management, whereas about 38 % is in areas with limited management opportunities, and 29 % is in areas where natural processes should dominate. To project the effects of forest management actions on carbon storage, staff of the SJNF are expected to use the Forest Vegetation Simulator (FVS) and extensions. While identifying FVS as the best tool generally available for this purpose, the users and developers we interviewed highlighted the limitations of applying an empirically based model over long time horizons. Future research to improve information on carbon storage should focus on locations and types of vegetation where carbon management is feasible and aligns with other management priorities.


Asunto(s)
Carbono/metabolismo , Cambio Climático , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Modelos Teóricos , Árboles/crecimiento & desarrollo , Colorado , Conservación de los Recursos Naturales/legislación & jurisprudencia , Toma de Decisiones , Técnicas de Apoyo para la Decisión , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/organización & administración , Bosques , Agencias Gubernamentales , Propiedad , Árboles/metabolismo , Estados Unidos
6.
Artículo en Inglés | MEDLINE | ID: mdl-25187788

RESUMEN

BACKGROUND: Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. RESULTS: Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. CONCLUSION: Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA