Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Immunol ; 11: 1740, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903402

RESUMEN

Background: Activation of protease-activated receptor-2 (PAR2) has been implicated in inflammation, pruritus, and skin barrier regulation, all characteristics of atopic dermatitis (AD), as well as Netherton syndrome which has similar characteristics. However, understanding the precise role of PAR2 on neuro-immune communication in AD has been hampered by the lack of appropriate animal models. Methods: We used a recently established mouse model with epidermal overexpression of PAR2 (PAR2OE) and littermate WT mice to study the impact of increased PAR2 expression in epidermal cells on spontaneous and house dust mite (HDM)-induced skin inflammation, itch, and barrier dysfunction in AD, in vivo and ex vivo. Results: PAR2OE newborns displayed no overt abnormalities, but spontaneously developed dry skin, severe pruritus, and eczema. Dermatological, neurophysiological, and immunological analyses revealed the hallmarks of AD-like skin disease. Skin barrier defects were observed before onset of skin lesions. Application of HDM onto PAR2OE mice triggered pruritus and the skin phenotype. PAR2OE mice displayed an increased density of nerve fibers, increased nerve growth factor and endothelin-1 expression levels, alloknesis, enhanced scratching (hyperknesis), and responses of dorsal root ganglion cells to non-histaminergic pruritogens. Conclusion: PAR2 in keratinocytes, activated by exogenous and endogenous proteases, is sufficient to drive barrier dysfunction, inflammation, and pruritus and sensitize skin to the effects of HDM in a mouse model that mimics human AD. PAR2 signaling in keratinocytes appears to be sufficient to drive several levels of neuro-epidermal communication, another feature of human AD.


Asunto(s)
Dermatitis Atópica/metabolismo , Epidermis/inervación , Ganglios Espinales/metabolismo , Queratinocitos/metabolismo , Prurito/metabolismo , Receptor PAR-2/metabolismo , Animales , Animales Modificados Genéticamente , Señalización del Calcio , Dermatitis Atópica/genética , Dermatitis Atópica/inmunología , Modelos Animales de Enfermedad , Endotelina-1/metabolismo , Queratinocitos/inmunología , Factor de Crecimiento Nervioso/metabolismo , Prurito/genética , Prurito/inmunología , Pyroglyphidae/inmunología , Receptor PAR-2/genética
2.
J Invest Dermatol ; 136(1): 154-160, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26763435

RESUMEN

Several thermosensitive transient receptor potential channels (transient receptor potential vanilloid type-1, -3; transient receptor potential cation channel, subfamily A, member 1) have been implicated in itch. In contrast, the role of transient receptor potential vanilloid type-4 (TRPV4) in itch is unknown. Therefore, we investigated if TRPV4, a temperature-sensitive cation channel, plays an important role in acute itch in mice. Four different pruritogens, including serotonin (5-hydroxytryptamine [5-HT]), histamine, SLIGRL (protease-activated receptors 2/mas-related G-protein-coupled receptor C11 agonist), and chloroquine (mas-related G-protein-coupled receptor A3 agonist), were intradermally injected into mice and itch-related scratching behavior was assessed. TRPV4 knockout mice exhibited significantly fewer 5-HT-evoked scratching bouts compared with wild-type mice. Notably, no differences between TRPV4 knockout and wild-type mice were observed in the number of scratch bouts elicited by SLIGRL and histamine. Pretreatment with a TRPV4 antagonist significantly attenuated 5-HT-evoked scratching in vivo. Using calcium imaging in cultured primary murine dorsal root ganglion neurons, the response of neurons after 5-HT application, but not other pruritogens, was significantly lower in TRPV4 knockout compared with wild-type mice. A TRPV4 antagonist significantly suppressed 5-HT-evoked responses in dorsal root ganglion cells from wild-type mice. Approximately 90% of 5-HT-sensitive dorsal root ganglion neurons were immunoreactive for an antibody to TRPV4, as assessed by calcium imaging. These results indicate that 5-HT-induced itch is linked to TRPV4.


Asunto(s)
Conducta Animal/efectos de los fármacos , Prurito/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Modelos Animales de Enfermedad , Histamina/efectos adversos , Histamina/farmacología , Inmunohistoquímica , Inyecciones Intradérmicas , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Prurito/inducido químicamente , Prurito/patología , Distribución Aleatoria , Receptor PAR-2/efectos de los fármacos , Receptor PAR-2/metabolismo , Valores de Referencia , Células Receptoras Sensoriales/efectos de los fármacos , Serotonina/efectos adversos , Serotonina/farmacología , Canales Catiónicos TRPV/genética
3.
J Clin Invest ; 124(6): 2683-95, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24812665

RESUMEN

In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein-coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin-converting enzyme 1 (ECE-1) as a key regulator of ET-1-induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1-containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1-induced activation of ERK1/2, but not p38. In a murine itch model, ET-1-induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1-induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Endotelina-1/metabolismo , Metaloendopeptidasas/metabolismo , Prurito/etiología , Prurito/metabolismo , Adulto , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/genética , Endotelina-1/administración & dosificación , Endotelina-1/genética , Enzimas Convertidoras de Endotelina , Femenino , Ganglios Espinales/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prurito/genética , Receptor de Endotelina A/metabolismo , Transducción de Señal , Piel/inervación , Piel/metabolismo , Piel/patología , Regulación hacia Arriba
4.
J Allergy Clin Immunol ; 133(2): 448-60, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24373353

RESUMEN

BACKGROUND: Although the cytokine IL-31 has been implicated in inflammatory and lymphoma-associated itch, the cellular basis for its pruritic action is yet unclear. OBJECTIVE: We sought to determine whether immune cell-derived IL-31 directly stimulates sensory neurons and to identify the molecular basis of IL-31-induced itch. METHODS: We used immunohistochemistry and quantitative real-time PCR to determine IL-31 expression levels in mice and human subjects. Immunohistochemistry, immunofluorescence, quantitative real-time PCR, in vivo pharmacology, Western blotting, single-cell calcium imaging, and electrophysiology were used to examine the distribution, functionality, and cellular basis of the neuronal IL-31 receptor α in mice and human subjects. RESULTS: Among all immune and resident skin cells examined, IL-31 was predominantly produced by TH2 and, to a significantly lesser extent, mature dendritic cells. Cutaneous and intrathecal injections of IL-31 evoked intense itch, and its concentrations increased significantly in murine atopy-like dermatitis skin. Both human and mouse dorsal root ganglia neurons express IL-31RA, largely in neurons that coexpress transient receptor potential cation channel vanilloid subtype 1 (TRPV1). IL-31-induced itch was significantly reduced in TRPV1-deficient and transient receptor channel potential cation channel ankyrin subtype 1 (TRPA1)-deficient mice but not in c-kit or proteinase-activated receptor 2 mice. In cultured primary sensory neurons IL-31 triggered Ca(2+) release and extracellular signal-regulated kinase 1/2 phosphorylation, inhibition of which blocked IL-31 signaling in vitro and reduced IL-31-induced scratching in vivo. CONCLUSION: IL-31RA is a functional receptor expressed by a small subpopulation of IL-31RA(+)/TRPV1(+)/TRPA1(+) neurons and is a critical neuroimmune link between TH2 cells and sensory nerves for the generation of T cell-mediated itch. Thus targeting neuronal IL-31RA might be effective in the management of TH2-mediated itch, including atopic dermatitis and cutaneous T-cell lymphoma.


Asunto(s)
Interleucinas/inmunología , Prurito/inmunología , Receptores de Interleucina/inmunología , Células Th2/inmunología , Animales , Canales de Calcio/inmunología , Células Cultivadas , Femenino , Ganglios Espinales/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/inmunología , Receptores de Interleucina/genética , Células Receptoras Sensoriales/inmunología , Piel/inmunología , Canal Catiónico TRPA1 , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/inmunología , Canales de Potencial de Receptor Transitorio/inmunología
5.
Proc Natl Acad Sci U S A ; 110(34): E3225-34, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23929777

RESUMEN

At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca(2+) response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain.


Asunto(s)
Endotelina-1/metabolismo , Células Epiteliales/efectos de la radiación , Dolor/metabolismo , Transducción de Señal/efectos de la radiación , Quemadura Solar/metabolismo , Canales Catiónicos TRPV/metabolismo , Rayos Ultravioleta , Análisis de Varianza , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Inmunohistoquímica , Ratones , Ratones Transgénicos , Microscopía Electrónica , Dolor/etiología , Piel/citología , Quemadura Solar/patología
6.
J Invest Dermatol ; 132(2): 375-84, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21993564

RESUMEN

Recent studies have indicated an important role of proteinases and proteinase-activated receptors (PARs) in tumorigenesis. Although a role for PARs has been described in various skin tumors including melanoma, the underlying cellular mechanisms have not been understood. Recent studies have suggested PAR(1) as a regulator of melanoma cell growth and metastasis by affecting angiogenic and invasive factors. Moreover, changes in the expression patterns of PAR(1) and PAR(2) correlate with skin cancer progression, and PAR(1) is overexpressed in melanoma. Therefore, we sought to elucidate the putative role of PAR(1)- and PAR(2)-mediated signal transduction pathways during melanoma progression. Activation of both PAR(1) and PAR(2) led to rapid phosphorylation of protein kinase D1 (PKD1) in cultured WM9 melanoma cells. PKD1 is known to be involved in cell migration, integrin regulation, and intracellular vesicle transport. Downregulation of PKD1 by siRNA resulted in diminished proliferation, decreased αvß3 integrin regulation, and secretion of pro-angiogenic chemokine IL-8 in WM9 cells. In conclusion, our results show that PAR(1) and PAR(2) are involved in WM9 cell proliferation and secretion of IL-8 by activation of PKD1. Inactivation of the PKD1 pathway may be beneficial for the inhibition of PAR-induced melanoma proliferation and for maintenance of the inflammatory tumor environment.


Asunto(s)
Melanoma/patología , Receptor PAR-1/fisiología , Receptor PAR-2/fisiología , Neoplasias Cutáneas/patología , Canales Catiónicos TRPP/fisiología , Línea Celular Tumoral , Forma de la Célula , Activación Enzimática , Humanos , Integrina alfaVbeta3/análisis , Interleucina-8/metabolismo , Fosforilación
7.
Semin Cutan Med Surg ; 30(2): 64-70, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21767766

RESUMEN

Itch has been described for many years as an unpleasant sensation that evokes the urgent desire to scratch. Studies of the neurobiology, neurophysiology, and cellular biology of itch have gradually been clarifying the mechanism of itch both peripherally and centrally. The discussion has been focused on which nerves and neuroreceptors play major roles in itch induction. The "intensity theory" hypothesizes that signal transduction on the same nerves leads to either pain (high intensity) or itch (low intensity), depending on the signal intensity. The "labeled-line coding theory" hypothesizes the complete separation of pain and itch pathways. Itch sensitization must also be considered in discussions of itch. This review highlights anatomical and functional properties of itch pathways and their relation to understanding itch perception and pruritic diseases.


Asunto(s)
Vías Aferentes/fisiopatología , Prurito/fisiopatología , Células Receptoras Sensoriales/fisiología , Piel/fisiopatología , Vías Aferentes/fisiología , Animales , Encéfalo/fisiología , Encéfalo/fisiopatología , Humanos , Piel/inervación , Médula Espinal/fisiología , Médula Espinal/fisiopatología
8.
Exp Dermatol ; 20(1): 69-71, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21158940

RESUMEN

Proteases and their receptors have poorly understood roles in skin fibrosis and systemic scleroderma (SSc). We examined the role of protease-activated receptors (PAR(1) and PAR(2) ) in the pathophysiology of human SSc and skin fibrosis. Immunohistochemistry showed that PAR(1) immunoreactivity was positive in fibroblasts of SSc skin and healthy skin. PAR(2) immunoreactivity was positive in SSc skin, but negative in endothelial cells and fibroblasts of healthy skin. Double immunofluorescence using an antibody against smooth muscle actin (α-SMA) as a marker for myofibroblasts verified a certain percentage of myofibroblasts positive for PAR(1) and PAR(2) in SSc skin. In human dermal cultured fibroblasts (HDF), PAR(1) stimulation with or without bleomycin pretreatment mobilized intracellular calcium, indicating that the expressed PARs are functional and have effects on downstream signalling by calcium release. PAR(2) -induced intracellular calcium mobilization was only measurable in HDF after bleomycin pretreatment. Thus, PAR(1) - and PAR(2) -positive fibroblasts are increased in SSc, indicating a regulatory role. Intriguingly, bleomycin activated PAR(2) in HDF indicating that fibrosis-promoting factors have a direct effect on PAR(2) expression and functionality.


Asunto(s)
Receptores Proteinasa-Activados/metabolismo , Esclerodermia Difusa/metabolismo , Piel/metabolismo , Piel/patología , Adulto , Anciano , Señalización del Calcio , Estudios de Casos y Controles , Fibrosis , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Miofibroblastos/metabolismo , Miofibroblastos/patología , Receptor PAR-1 , Receptor PAR-2/metabolismo , Esclerodermia Difusa/patología
9.
J Invest Dermatol ; 129(7): 1816-23, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19242518

RESUMEN

Matriptase (membrane-type serine proteinase) was reported to play a role in nonmelanoma skin cancer progression. Moreover, it was shown to stimulate proteinase-activated receptor-2 (PAR(2)) in vitro. Hepatocyte growth factor activator inhibitor-1 (HAI-1), the matriptase inhibitor, is an important regulator of enzyme activity. Therefore, the aim of this study was to elucidate the putative role of matriptase, HAI-1, and PAR(2) in normal human skin, as well as in basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs). In normal human epidermis, PAR(2) colocalized with matriptase and HAI-1. Immunoreactivity of all proteins was found to be diminished in BCCs. Likewise, PAR(2) immunoreactivity was significantly decreased, whereas matriptase immunoreactivity was enhanced with SCC progression. We could also show that matriptase was complexed to HAI-1 in normal human skin, whereas in SCCs, the enzyme was present in an unassociated form. Both a specific peptide agonist for PAR(2) and the proteinase domain of matriptase were able to induce intracellular calcium mobilization and inhibition of proliferation in cultured HaCaT keratinocytes. In conclusion, our results suggest that PAR(2) is a substrate for matriptase in human skin in vivo. Deregulation of these proteins delineates SCC progression.


Asunto(s)
Carcinoma Basocelular/metabolismo , Carcinoma de Células Escamosas/metabolismo , Receptor PAR-2/metabolismo , Serina Endopeptidasas/metabolismo , Neoplasias Cutáneas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Calcio/metabolismo , Carcinoma Basocelular/patología , Carcinoma de Células Escamosas/patología , División Celular/fisiología , Línea Celular , Epidermis/metabolismo , Epidermis/patología , Femenino , Humanos , Inmunohistoquímica , Queratinocitos/citología , Queratinocitos/metabolismo , Masculino , Persona de Mediana Edad , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Neoplasias Cutáneas/patología
10.
Endocrinology ; 149(5): 2200-7, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18276747

RESUMEN

Agonist-induced internalization of somatostatin receptors (ssts) determines subsequent cellular responsiveness to peptide agonists and influences sst receptor scintigraphy. To investigate sst2A trafficking, rat sst2A tagged with epitope was expressed in human embryonic kidney cells and tracked by antibody labeling. Confocal microscopical analysis revealed that stimulation with sst and octreotide induced internalization of sst2A. Internalized sst2A remained sequestrated within early endosomes, and 60 min after stimulation, internalized sst2A still colocalized with beta-arrestin1-enhanced green fluorescence protein (EGFP), endothelin-converting enzyme-1 (ECE-1), and rab5a. Internalized (125)I-Tyr(11)-SST-14 was rapidly hydrolyzed by endosomal endopeptidases, with radioactive metabolites being released from the cell. Internalized (125)I-Tyr(1)-octreotide accumulated as an intact peptide and was released from the cell as an intact peptide ligand. We have identified ECE-1 as one of the endopeptidases responsible for inactivation of internalized SST-14. ECE-1-mediated cleavage of SST-14 was inhibited by the specific ECE-1 inhibitor, SM-19712, and by preventing acidification of endosomes using bafilomycin A(1). ECE-1 cleaved SST-14 but not octreotide in an acidic environment. The metallopeptidases angiotensin-1 converting enzyme and ECE-2 did not hydrolyze SST-14 or octreotide. Our results show for the first time that stimulation with SST-14 and octreotide induced sequestration of sst2A into early endosomes and that endocytosed SST-14 is degraded by endopeptidases located in early endosomes. Furthermore, octreotide was not degraded by endosomal peptidases and was released as an intact peptide. This mechanism may explain functional differences between octreotide and SST-14 after sst2A stimulation. Moreover, further investigation of endopeptidase-regulated trafficking of neuropeptides may result in novel concepts of neuropeptide receptor inactivation in cancer diagnosis.


Asunto(s)
Ácido Aspártico Endopeptidasas/fisiología , Endocitosis , Metaloendopeptidasas/fisiología , Procesamiento Proteico-Postraduccional , Somatostatina/farmacocinética , Secuencia de Aminoácidos , Arrestinas/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Células Cultivadas , Endopeptidasas/metabolismo , Endosomas/metabolismo , Enzimas Convertidoras de Endotelina , Humanos , Radioisótopos de Yodo/farmacocinética , Metaloendopeptidasas/metabolismo , Octreótido/farmacocinética , Unión Proteica/efectos de los fármacos , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/metabolismo , beta-Arrestinas
11.
J Invest Dermatol ; 128(1): 18-25, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17625593

RESUMEN

Proteinase-activated receptor-2 (PAR2) is a seven transmembrane spanning, G-protein-coupled receptor, present on the membrane of many cell types including keratinocytes. In skin, PAR2 is suggested to play a regulatory role during inflammation, epidermal barrier function, and pruritus. PAR2 is activated by trypsin-like proteases by a unique mechanism where cleavage of the receptor leads to the release of a small peptide, which activates the receptor as a tethered ligand. The endogenous activators of PAR2 on keratinocytes have not been identified as of yet. Potential candidates are kallikrein-related peptidases (KLKs) expressed by epidermal cells. Therefore, the ability of four human skin-derived KLKs was examined with regard to their capacity to activate PAR2 in vitro. PAR2 cleavage was followed by immunofluorescence analysis and functional activation by measurements of changes in intracellular calcium levels. We found that KLK5 and KLK14, but neither KLK7 nor KLK8, induced PAR2 signalling. We conclude that certain, but not all, epidermal KLKs are capable of activating PAR2. We could also show the coexpression of KLK14 and PAR2 receptor in inflammatory skin disorders. These in vitro results suggest that KLKs may take part in PAR2 activation in the epidermis and thereby in PAR2-mediated inflammatory responses, including epidermal barrier repair and pruritus. The role of KLKs in PAR2 activation in vivo remains to be elucidated.


Asunto(s)
Calicreínas/fisiología , Receptor PAR-2/fisiología , Calcio/metabolismo , Línea Celular , Técnica del Anticuerpo Fluorescente , Humanos , Calicreínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA