Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Physiol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196901

RESUMEN

Acute injury of skeletal muscle disrupts myofibres, microvessels and motor innervation. Myofibre regeneration is well characterized, however its relationship with the regeneration of microvessels and motor nerves is undefined. Endothelial cell (EC) ephrin-B2 (Efnb2) is required for angiogenesis during embryonic development and promotes neurovascular regeneration in the adult. We hypothesized that, following acute injury to skeletal muscle, loss of EC Efnb2 would impair microvascular regeneration and the recovery of neuromuscular junction (NMJ) integrity. Mice (aged 3-6 months) were bred for EC-specific conditional knockout (CKO) of Efnb2 following tamoxifen injection with non-injected CKO mice as controls (CON). The gluteus maximus, tibialis anterior or extensor digitorum longus muscle was then injured with local injection of BaCl2. Intravascular staining with wheat germ agglutinin revealed diminished capillary area in the gluteus maximus of CKO vs. CON at 5 days post-injury (dpi); both recovered to uninjured (0 dpi) level by 10 dpi. At 0 dpi, tibialis anterior isometric force of CKO was less than CON. At 10 dpi, isometric force was reduced by half in both groups. During intermittent contractions (75 Hz, 330 ms s-1, 120 s), isometric force fell during indirect (sciatic nerve) stimulation whereas force was maintained during direct (electrical field) stimulation of myofibres. Neuromuscular transmission failure correlated with perturbed presynaptic (terminal Schwann cells) and postsynaptic (nicotinic acetylcholine receptors) NMJ morphology in CKO. Resident satellite cell number on extensor digitorum longus myofibres did not differ between groups. Following acute injury of skeletal muscle, loss of Efnb2 in ECs delays capillary regeneration and attenuates recovery of NMJ structure and function. KEY POINTS: The relationship between microvascular regeneration and motor nerve regeneration following skeletal muscle injury is undefined. Expression of Efnb2 in endothelial cells (ECs) is essential to vascular development and promotes neurovascular regeneration in the adult. To test the hypothesis that EfnB2 in ECs is required for microvascular regeneration and myofibre reinnervation, we induced conditional knockout of Efnb2 in ECs of mice. Acute injury was then induced by BaCl2 injection into gluteus maximus, tibialis anterior or extensor digitorum longus (EDL) muscle. Capillary regeneration was reduced at 5 days post-injury (dpi) in gluteus maximus of conditional knockout vs. controls; at 10 dpi, neither differed from uninjured. Nerve stimulation revealed neuromuscular transmission failure in tibialis anterior with perturbed neuromuscular junction structure. Resident satellite cell number on EDL myofibres did not differ between groups. Conditional knockout of EC Efnb2 delays capillary regeneration and attenuates recovery of neuromuscular junction structure and function.

2.
Nutrients ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38613023

RESUMEN

BACKGROUND: Microalgae like Phaeodactylum tricornutum (PT) contain the carotenoid, fucoxanthin, which has been purported to promote fat loss, lower blood lipids, and improve glucose management. This study examined whether dietary supplementation with microalgae extracts from PT containing 4.4 mg/d of fucoxanthin affects changes in body composition or health markers in overweight women during an exercise and diet intervention. MATERIALS AND METHODS: A total of 37 females (28.6 ± 7.9 years, 80.2 ± 14.9 kg, 29.6 ± 3.8 kg/m², 41.4 ± 4.2% fat) fasted for 12 h, donated a fasting blood sample, completed health and mood state inventories, and undertook body composition, health, and exercise assessments. In a counterbalanced, randomized, and double-blind manner, participants ingested a placebo (PL), or microalgae extract of Phaeodactylum tricornutum standardized to 4.4 mg of fucoxanthin (FX) for 12 weeks while participating in a supervised exercise program that included resistance-training and walking (3 days/week) with encouragement to accumulate 10,000 steps/day on remaining days of the week. The diet intervention involved reducing energy intake by about -300 kcal/d (i.e., ≈1400-1600 kcals/d, 55% carbohydrate, 30% fat, 15% protein) to promote a -500 kcal/d energy deficit with exercise. Follow-up testing was performed at 6 and 12 weeks. A general linear model (GLM) with repeated measures statistical analysis was used to analyze group responses and changes from baseline with 95% confidence intervals. RESULTS: Dietary supplementation with microalgae extract from PT containing fucoxanthin for 12 weeks did not promote additional weight loss or fat loss in overweight but otherwise healthy females initiating an exercise and diet intervention designed to promote modest weight loss. However, fucoxanthin supplementation preserved bone mass, increased bone density, and saw greater improvements in walking steps/day, resting heart rate, aerobic capacity, blood lipid profiles, adherence to diet goals, functional activity tolerance, and measures of quality of life. Consequently, there appears to be some benefit to supplementing microalgae extract from PT containing fucoxanthin during a diet and exercise program. Registered clinical trial #NCT04761406.


Asunto(s)
Microalgas , Xantófilas , Femenino , Humanos , Suplementos Dietéticos , Sobrepeso/terapia , Calidad de Vida , Pérdida de Peso , Adulto Joven , Adulto
3.
Nutrients ; 15(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37447400

RESUMEN

Recent research supports previous contentions that encapsulating vitamins and minerals with liposomes help improve overall bioavailability. This study examined whether ingesting a liposomal multivitamin and mineral supplement (MVM) differentially affects the appearance and/or clearance of vitamins and minerals in the blood compared to a non-liposomal MVM supplement. In a double-blind, randomized, and counterbalanced manner, 34 healthy men and women fasted for 12 h. Then, they ingested a non-liposomal (NL) or liposomal (L) MVM supplement and a standardized snack. Venous blood samples were obtained at 0, 2, 4, and 6 h after MVM ingestion and analyzed for a panel of vitamins and minerals. Plasma levels of vitamins and minerals and mean changes from baseline with 95% confidence intervals (CIs) were analyzed using general linear model statistics with repeated measures. The observed values were also entered into pharmacokinetic analysis software and analyzed through univariate analysis of variance with repeated measure contrasts. The results revealed an overall treatment x time interaction effect among the vitamins and minerals evaluated (p = 0.051, ηp2 = 0.054, moderate effect). Differences between treatments were also observed in volume distribution area (vitamin E, iron), median residence time (vitamin E, iron), volume distribution area (iron), volume of distribution steady state (vitamin A, E, iron), clearance rates (vitamin A, E), elimination phase half-life (vitamin E, iron), distribution/absorption phase intercept (vitamin A), and distribution/absorption phase slope and rate (vitamin C, calcium). Vitamin volume distribution was lower with liposomal MVM ingestion than non-liposomal MVM sources, suggesting greater clearance and absorption since similar amounts of vitamins and minerals were ingested. These findings indicate that coating a MVM with liposomes affects individual nutrient pharmacokinetic profiles. Additional research should evaluate how long-term supplementation of liposomal MVM supplements may affect vitamin and mineral status, nutrient function, and/or health outcomes.


Asunto(s)
Liposomas , Vitamina A , Femenino , Humanos , Masculino , Suplementos Dietéticos , Hierro , Minerales , Vitamina E , Vitamina K , Vitaminas , Método Doble Ciego
4.
Nutrients ; 15(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37111136

RESUMEN

BACKGROUND: Esports competitive gaming requires selective visual attention, memory, quick judgment, and an ability to sustain psychomotor performance over time. Fucoxanthin is a carotenoid, found in specific microalgae varieties such as Phaeodactylum tricornutum (PT), that has been purported to possess nootropic and neuroprotective effects through its anti-inflammatory and antioxidant properties. This study evaluated whether acute and 30-day supplementation of an extract of PT from microalgae combined with guarana (a natural source of caffeine) affects cognitive function in gamers. MATERIALS AND METHODS: In a double-blind, placebo-controlled manner, 61 experienced gamers (21.7 ± 4.1 years, 73 ± 13 kg) were randomly assigned to ingest a placebo (PL), a low-dose (LD) supplement containing 440 mg of PT extract including 1% fucoxanthin +500 mg of guarana containing 40-44 mg caffeine (MicroPhyt™, Microphyt, Baillargues, FR), or a high-dose (HD) supplement containing 880 mg of PT extract +500 mg of guarana for 30 days. At baseline, cognitive function tests were administered before supplementation, 15 min post-supplementation, and after 60 min of competitive gameplay with participants' most played video game. Participants continued supplementation for 30 days and then repeated pre-supplementation and post-gaming cognitive function tests. General linear model univariate analyses with repeated measures and changes from baseline with 95% confidence intervals were used to analyze data. RESULTS: There was some evidence that acute and 30-day ingestion of the PT extract from microalgae with guarana improved reaction times, reasoning, learning, executive control, attention shifting (cognitive flexibility), and impulsiveness. While some effects were seen after acute ingestion, the greatest impact appeared after 30 days of supplementation, with some benefits seen in the LD and HD groups. Moreover, there was evidence that both doses of the PT extract from microalgae with guarana may support mood state after acute and 30-day supplementation. Registered clinical trial #NCT04851899.


Asunto(s)
Microalgas , Paullinia , Juegos de Video , Humanos , Cafeína/farmacología , Cognición , Suplementos Dietéticos , Método Doble Ciego
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA