Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ground Water ; 61(6): 778-792, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057729

RESUMEN

Nuclear magnetic resonance (NMR) logging is a promising method for estimating hydraulic conductivity (K). During the past ∼60 years, NMR logging has been used for petroleum applications, and different models have been developed for deriving estimates of permeability. These models involve calibration parameters whose values were determined through decades of research on sandstones and carbonates. We assessed the use of five models to derive estimates of K in glacial aquifers from NMR logging data acquired in two wells at each of two field sites in central Wisconsin, USA. Measurements of K, obtained with a direct push permeameter (DPP), KDPP , were used to obtain the calibration parameters in the Schlumberger-Doll Research, Seevers, Timur-Coates, Kozeny-Godefroy, and sum-of-echoes (SOE) models so as to predict K from the NMR data; and were also used to assess the ability of the models to predict KDPP . We obtained four well-scale calibration parameter values for each model using the NMR and DPP measurements in each well; and one study-scale parameter value for each model by using all data. The SOE model achieved an agreement with KDPP that matched or exceeded that of the other models. The Timur-Coates estimates of K were found to be substantially different from KDPP . Although the well-scale parameter values for the Schlumberger-Doll, Seevers, and SOE models were found to vary by less than a factor of 2, more research is needed to confirm their general applicability so that site-specific calibration is not required to obtain accurate estimates of K from NMR logging data.


Asunto(s)
Agua Subterránea , Movimientos del Agua , Espectroscopía de Resonancia Magnética/métodos , Calibración , Wisconsin
2.
Ground Water ; 59(1): 31-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32390161

RESUMEN

Glacial aquifers are an important source of groundwater in the United States and require accurate characterization to make informed management decisions. One parameter that is crucial for understanding the movement of groundwater is hydraulic conductivity, K. Nuclear magnetic resonance (NMR) logging measures the NMR response associated with the water in geological materials. By utilizing an external magnetic field to manipulate the nuclear spins associated with 1 H, the time-varying decay of the nuclear magnetization is measured. This logging method could provide an effective way to estimate K at submeter vertical resolution, but the models that relate NMR measurements to K require calibration. At two field sites in a glacial aquifer in central Wisconsin, we collected a total of four NMR logs and obtained measurements of K in their immediate vicinity with a direct-push permeameter (DPP). Using a bootstrap algorithm to calibrate the Schlumberger-Doll Research (SDR) NMR-K model, we estimated K to within a factor of 5 of the DPP measurements. The lowest levels of accuracy occurred in the lower-K (K < 10-4  m/s) intervals. We also evaluated the applicability of prior SDR model calibrations. We found the NMR calibration parameters varied with K, suggesting the SDR model does not incorporate all the properties of the pore space that control K. Thus, the expected range of K in an aquifer may need to be considered during calibration of NMR-K models. This study is the first step toward establishing NMR logging as an effective method for estimating K in glacial aquifers.


Asunto(s)
Agua Subterránea , Geología , Espectroscopía de Resonancia Magnética , Movimientos del Agua , Wisconsin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA