Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Metabolites ; 12(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35050145

RESUMEN

Intestinal acute rejection (AR) lacks a reliable non-invasive biomarker and AR surveillance is conducted through frequent endoscopic biopsies. Although citrulline and calprotectin have been suggested as AR biomarkers, these have limited clinical value. Using a mouse model of intestinal transplantation (ITx), we performed a proteome-wide analysis and investigated rejection-related proteome changes that may eventually be used as biomarkers. ITx was performed in allogenic (Balb/C to C57Bl) and syngeneic (C57Bl) combinations. Graft samples were obtained three and six days after transplantation (n = 4/time point) and quantitative proteomic analysis with iTRAQ-labeling and mass spectrometry of whole tissue homogenates was performed. Histology showed moderate AR in all allografts post-transplantation at day six. Nine hundred and thirty-eight proteins with at least three unique peptides were identified in the intestinal grafts. Eighty-six proteins varying by >20% between time points and/or groups had an alteration pattern unique to the rejecting allografts: thirty-seven proteins and enzymes (including S100-A8 and IDO-1) were significantly upregulated whereas forty-nine (among other chromogranin, ornithine aminotransferase, and arginase) were downregulated. Numerous proteins showed altered expression during intestinal AR, several of which were previously identified to be involved in acute rejection, although our results also identified previously unreported proteome changes. The metabolites and downstream metabolic pathways of some of these proteins and enzymes may become potential biomarkers for intestinal AR.

2.
Mol Cell Proteomics ; 16(5): 743-758, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28461410

RESUMEN

The mucin O-glycosylation of 10 individuals with and without gastric disease was examined in depth in order to generate a structural map of human gastric glycosylation. In the stomach, these mucins and their O-glycosylation protect the epithelial surface from the acidic gastric juice and provide the first point of interaction for pathogens such as Helicobacter pylori, reported to cause gastritis, gastric and duodenal ulcers and gastric cancer. The rational of the present study was to map the O-glycosylation that the pathogen may come in contact with. An enormous diversity in glycosylation was found, which varied both between individuals and within mucins from a single individual: mucin glycan chain length ranged from 2-13 residues, each individual carried 34-103 O-glycan structures and in total over 258 structures were identified. The majority of gastric O-glycans were neutral and fucosylated. Blood group I antigens, as well as terminal α1,4-GlcNAc-like and GalNAcß1-4GlcNAc-like (LacdiNAc-like), were common modifications of human gastric O-glycans. Furthemore, each individual carried 1-14 glycan structures that were unique for that individual. The diversity and alterations in gastric O-glycosylation broaden our understanding of the human gastric O-glycome and its implications for gastric cancer research and emphasize that the high individual variation makes it difficult to identify gastric cancer specific structures. However, despite the low number of individuals, we could verify a higher level of sialylation and sulfation on gastric O-glycans from cancerous tissue than from healthy stomachs.


Asunto(s)
Mucinas Gástricas/química , Polisacáridos/química , Antígenos de Grupos Sanguíneos/química , Cromatografía Liquida , Epítopos/metabolismo , Mucinas Gástricas/metabolismo , Humanos , Mucina 5AC/química , Mucina 5AC/metabolismo , Polisacáridos/metabolismo , Espectrometría de Masas en Tándem
3.
Mol Cell Proteomics ; 2017 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-28289177

RESUMEN

The mucin O-glycosylation of 10 individuals with and without gastric disease was examined in depth in order to generate a structural map of human gastric glycosylation. In the stomach, these mucins and their O-glycosylation protect the epithelial surface from the acidic gastric juice and provide the first point of interaction for pathogens such as Helicobacter pylori, reported to cause gastritis, gastric and duodenal ulcers and gastric cancer. The rational of the present study was to map the O-glycosylation that the pathogen may come in contact with. An enormous diversity in glycosylation was found, which varied both between individuals and within mucins from a single individual: mucin glycan chain length ranged from 2-13 residues, each individual carried 34-103 O-glycan structures and in total over 258 structures were identified. The majority of gastric O-glycans were neutral and fucosylated. Blood group I antigens, as well as terminal α1,4-GlcNAc-like and GalNAcß1-4GlcNAc-like (LacdiNAc-like), were common modifications of human gastric O-glycans. Furthemore, each individual carried 1-14 glycan structures that were unique for that individual. The diversity and alterations in gastric O-glycosylation broaden our understanding of the human gastric O-glycome and its implications for gastric cancer research and emphasize that the high individual variation makes it difficult to identify gastric cancer specific structures. However, despite the low number of individuals, we could verify a higher level of sialylation and sulfation on gastric O-glycans from cancerous tissue than from healthy stomachs.

4.
Sci Rep ; 7: 45178, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28345601

RESUMEN

There is an increasing interest in the use of dried blood spot (DBS) sampling and multiple reaction monitoring in proteomics. Although several groups have explored the utility of DBS by focusing on protein detection, the reproducibility of the approach and whether it can be used for biomarker discovery in high throughput studies is yet to be determined. We assessed the reproducibility of multiplexed targeted protein measurements in DBS compared to serum. Eighty-two medium to high abundance proteins were monitored in a number of technical and biological replicates. Importantly, as part of the data analysis, several statistical quality control approaches were evaluated to detect inaccurate transitions. After implementing statistical quality control measures, the median CV on the original scale for all detected peptides in DBS was 13.2% and in Serum 8.8%. We also found a strong correlation (r = 0.72) between relative peptide abundance measured in DBS and serum. The combination of minimally invasive sample collection with a highly specific and sensitive mass spectrometry (MS) technique allows for targeted quantification of multiple proteins in a single MS run. This approach has the potential to fundamentally change clinical proteomics and personalized medicine by facilitating large-scale studies.


Asunto(s)
Biomarcadores/sangre , Pruebas con Sangre Seca/métodos , Péptidos/sangre , Proteómica/métodos , Biomarcadores/análisis , Cromatografía Liquida , Femenino , Humanos , Masculino , Péptidos/análisis , Medicina de Precisión , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
5.
BMC Microbiol ; 17(1): 11, 2017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-28061865

RESUMEN

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers to endemic areas. Secretion of the heat labile AB5 toxin (LT) is induced by alkaline conditions. In this study, we determined the surface proteome of ETEC exposed to alkaline conditions (pH 9) as compared to neutral conditions (pH 7) using a LPI Hexalane FlowCell combined with quantitative proteomics. Relative quantitation with isobaric labeling (TMT) was used to compare peptide abundance and their corresponding proteins in multiple samples at MS/MS level. For protein identification and quantification samples were analyzed using either a 1D-LCMS or a 2D-LCMS approach. RESULTS: Strong up-regulation of the ATP synthase operon encoding F1Fo ATP synthase and down-regulation of proton pumping proteins NuoF, NuoG, Ndh and WrbA were detected among proteins involved in regulating the proton and electron transport under alkaline conditions. Reduced expression of proteins involved in osmotic stress was found at alkaline conditions while the Sec-dependent transport over the inner membrane and outer membrane protein proteins such as OmpA and the ß-Barrel Assembly Machinery (BAM) complex were up-regulated. CONCLUSIONS: ETEC exposed to alkaline environments express a specific proteome profile characterized by up-regulation of membrane proteins and secretion of LT toxin. Alkaline microenvironments have been reported close to the intestinal epithelium and the alkaline proteome may hence represent a better view of ETEC during infection.


Asunto(s)
Escherichia coli Enterotoxigénica/metabolismo , Proteínas de Escherichia coli/análisis , Proteómica , Adenosina Trifosfatasas , Aminoácidos/metabolismo , Proteínas de la Membrana Bacteriana Externa/análisis , Toxinas Bacterianas/análisis , Toxinas Bacterianas/metabolismo , Regulación hacia Abajo , Transporte de Electrón , Escherichia coli Enterotoxigénica/crecimiento & desarrollo , Escherichia coli Enterotoxigénica/patogenicidad , Enterotoxinas/análisis , Enterotoxinas/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas , Operón , Biosíntesis de Proteínas , Espectrometría de Masas en Tándem/métodos , Transcripción Genética , Tripsina/metabolismo , Regulación hacia Arriba
6.
Front Microbiol ; 7: 1757, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27891114

RESUMEN

Helicobacter pylori, a gastroenteric pathogen believed to have co-evolved with humans over 100,000 years, shows significant genetic variability. This motivates the study of different H. pylori strains and the diseases they cause in order to identify determinants for disease evolution. In this study, we used proteomics tools to compare two H. pylori strains. Nic25_A was isolated in Nicaragua from a patient with intestinal metaplasia, and P12 was isolated in Europe from a patient with duodenal ulcers. Differences in the abundance of surface proteins between the two strains were determined with two mass spectrometry-based methods, label-free quantification (MaxQuant) or the use of tandem mass tags (TMT). Each approach used a lipid-based protein immobilization (LPITM) technique to enrich peptides of surface proteins. Using the MaxQuant software, we found 52 proteins that differed significantly in abundance between the two strains (up- or downregulated by a factor of 1.5); with TMT, we found 18 proteins that differed in abundance between the strains. Strain P12 had a higher abundance of proteins encoded by the cag pathogenicity island, while levels of the acid response regulator ArsR and its regulatory targets (KatA, AmiE, and proteins involved in urease production) were higher in strain Nic25_A. Our results show that differences in protein abundance between H. pylori strains can be detected with proteomic approaches; this could have important implications for the study of disease progression.

7.
Mol Cell Proteomics ; 14(6): 1464-77, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25776888

RESUMEN

The Gram-negative bacteria Campylobactor jejuni is the primary bacteria responsible for food poisoning in industrialized countries, and acute diarrheal illness is a leading cause of mortality among children in developing countries. C. jejuni are commensal in chickens. They are particularly abundant in the caecal crypts, and poultry products are commonly infected as a result of cross-contamination during processing. The interactions between C. jejuni and chicken intestinal tissues as well as the pathogenic molecular mechanisms of colonization in humans are unknown, but identifying these factors could provide potential targets to reduce the incidence of campylobacteriosis. Recently, purified chicken intestinal mucin was shown to attenuate adherence and invasion of C. jejuni in the human colorectal adenocarcinoma cell line HCT-8 in vitro, and this effect was attributed to mucin O-glycosylation. Mucins from different regions of the chicken intestine inhibited C. jejuni binding and internalization differentially, with large intestine>small intestine>caecum. Here, we use LC-MS to perform a detailed structural analysis of O-glycans released from mucins purified from chicken large intestine, small intestine, and caecum. The O-glycans identified were abundantly sulfated compared with the human intestines, and sulfate moieties were present throughout the chicken intestinal tract. Interestingly, alpha 1-2 linked fucose residues, which have a high binding affinity to C. jejuni, were identified in the small and large intestines. Additionally, N-glycolylneuraminic/N-acetylneuraminic acid containing structures present as Sd(a)-like epitopes were identified in large intestine samples but not small intestine or caecum. O-glycan structural characterization of chicken intestinal mucins provides insights into adherence and invasion properties of C. jejuni, and may offer prospective candidate molecules aimed at reducing the incidence of infection.


Asunto(s)
Mucinas/química , Polisacáridos/química , Animales , Campylobacter jejuni/patogenicidad , Pollos , Femenino , Humanos , Intestino Grueso , Intestino Delgado
8.
Methods Mol Biol ; 988: 145-67, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23475718

RESUMEN

Analysis of O-linked glycosylation is one of the main challenges during structural validation of recombinant glycoproteins. With methods available for N-linked glycosylation in regard to oligosaccharide analysis as well as glycopeptide mapping, there are still challenges for O-linked glycan analysis. Here, we present mass spectrometric methodology for O-linked oligosaccharides released by reductive ß-elimination. Using LC-MS and LC-MS(2) with graphitized carbon columns, oligosaccharides are analyzed without derivatization. This approach provides a high-throughput method for screening during clonal selection, as well as product structure verification, without impairing sequencing ability. The protocols are exemplified by analysis of glycoproteins from mammalian cell cultures (CHO cells) as well as insect cells and yeast. The data shows that the method can be successfully applied to both neutral and acidic O-linked oligosaccharides, where sialic acid, hexuronic acid, and sulfate are common substituents. Further characterization of O-glycans can be achieved using permethylation. Permethylation of O-linked oligosaccharides followed by direct infusion into the mass spectrometer provide information about oligosaccharide composition, and subsequent MS (n) experiments can be carried out to elucidate oligosaccharide structure including linkage information and sequence.


Asunto(s)
Inmunoglobulina G/química , Glicoproteínas de Membrana/química , Oligosacáridos/química , Proteínas Recombinantes de Fusión/química , Animales , Conformación de Carbohidratos , Secuencia de Carbohidratos , Cromatografía de Afinidad , Cromatografía en Gel , Glicoproteínas/química , Glicoproteínas/aislamiento & purificación , Glicosilación , Humanos , Immunoblotting , Inmunoglobulina G/aislamiento & purificación , Glicoproteínas de Membrana/aislamiento & purificación , Metilación , Ratones , Datos de Secuencia Molecular , Oligosacáridos/aislamiento & purificación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/aislamiento & purificación , Estándares de Referencia , Espectrometría de Masa por Ionización de Electrospray/normas
9.
Glycobiology ; 22(8): 1077-85, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22543025

RESUMEN

Isolation of MUC5AC mucins from the gastric mucosa from two secretor individuals (one from normal mucosa from a patient with gastric cancer and one from a control) showed different abilities to bind and induce the proliferation of the Helicobacter pylori strain J99. Analysis of the released O-linked oligosaccharides by LC-MS from these individuals showed a very heterogeneous mixture of species from the cancer patient containing both neutral and sialylated structures, whereas the normal sample showed dominating neutral blood group H terminating structures as well as neutral structures containing the di-N-acetyllactosamine (lacdiNAc) unit GalNAcß1-4GlcNAcß1- on the C-6 branch of the reducing end GalNAc. The linkage configuration of these epitopes were determined using C-4-specific fragmentation for the GalNAcß1-4GlcNAcß1- glycosidic linkage, comparison of the MS(3) fragmentation with standards for linkage configuration and N-acetylhexosamine type as well as exoglycosidase treatment. It was also shown that the lacdiNAc epitope is present in both human and porcine gastric mucins, indicating that this is an epitope preserved between species. We hypothesize that the termination on gastric MUC5AC with lacdiNAc is in competition with complex glycosylation such as the Le(b) and H type 1 as well as complex sialylated structures. These are epitopes known to bind the H. pylori BabA and SabA adhesins.


Asunto(s)
Acetilglucosamina/metabolismo , Adhesinas Bacterianas/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Mucina 5AC/metabolismo , Oligosacáridos/metabolismo , Adhesión Bacteriana , Cromatografía Liquida , Epítopos , Glicosilación , Helicobacter pylori/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Metabolites ; 2(4): 648-66, 2012 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24957756

RESUMEN

The availability of specific exoglycosidases alongside a spectral library of O-linked oligosaccharide collision induced dissociation (CID) MS fragments, UniCarb-DB, provides a pathway to make the elucidation of O-linked oligosaccharides more efficient. Here, we advise an approach of exoglycosidase-digestion of O-linked oligosaccharide mixtures, for structures that do not provide confirmative spectra. The combination of specific exoglycosidase digestion and MS2 matching of the exoglycosidase products with structures from UniCarb-DB, allowed the assignment of unknown structures. This approach was illustrated by treating sialylated core 2 O-linked oligosaccharides, released from the human synovial glycoprotein (lubricin), with a α2-3 specific sialidase. This methodology demonstrated the exclusive 3 linked nature of the sialylation of core 2 oligosaccharides on lubricin. When specific exoglycosidases were not available, MS3 spectral matching using standards was used. This allowed the unusual 4-linked terminal GlcNAc epitope in a porcine stomach to be identified in the GlcNAc1-4Galb1-3(GlcNAcb1-6)GalNAcol structure, indicating the antibacterial epitope GlcNAca1-4. In total, 13 structures were identified using exoglycosidase and MSn, alongside UniCarb-DB fragment spectra comparison. UniCarb-DB could also be used to identify the specificity of unknown exoglycosidases in human saliva. Endogenous salivary exoglycosidase activity on mucin oligosaccharides could be monitored by comparing the generated tandem MS spectra with those present in UniCarb-DB, showing that oral exoglycosidases were dominated by sialidases with a higher activity towards 3-linked sialic acid rather than 6-linked sialic acid.

11.
Rapid Commun Mass Spectrom ; 25(18): 2611-8, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-23657955

RESUMEN

Migration of sulfate groups between hydroxyl groups was identified after collision-induced dissociation (CID) of sulfated oligosaccharides in an ion trap mass spectrometer in negative ion mode. Analysis of various sulfated oligosaccharides showed that this was a common phenomenon and was particularly prominent in sulfated oligosaccharides also containing sialic acid. It was also shown that the level of migration was increased when the sulfate was positioned on the flexible areas of the oligosaccharides not involved in the pyranose ring, such as the extra-cyclic C-6 carbon of hexoses or N-acetylhexosamines, or on reduced oligosaccharide. This suggested that migration is dependent on the spatial availability of the sulfate in the ion trap during collision. It is proposed that the migration is initiated when the negatively charged -SO3 (-) residue attached to the oligosaccharide precursor becomes protonated by a CID-induced proton transfer. This is supported by the CID fragmentation of precursor ions depleted of acidic protons such as doubly charged [M - 2H](2-) ions or the sodiated [M + Na - 2H](-) ions of oligosaccharides containing one sulfate and one sialic acid in the same molecule. Compared to the CID fragmentation of their monocharged [M - H](-) ions, no migration was observed in CID of proton depleted precursors. Alternative fragmentation parameters to suppress migration of sulfated oligosaccharides also showed that it was not present when sulfated oligosaccharides were fragmented by HCD (High-Energy C-trap Dissociation) in an Orbitrap mass spectrometer.


Asunto(s)
Oligosacáridos/química , Sulfatos/química , Espectrometría de Masas , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA