Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 104(24): 10613-10629, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33180172

RESUMEN

Smokeless tobacco products (STP) contain bacteria, mold, and fungi due to exposure from surrounding environments and tobacco processing. This has been a cause for concern since the presence of microorganisms has been linked to the formation of highly carcinogenic tobacco-specific nitrosamines. These communities have also been reported to produce toxins and other pro-inflammatory molecules that can cause mouth lesions and elicit inflammatory responses in STP users. Moreover, microbial species in these products could transfer to the mouth and gastrointestinal tract, potentially altering the established respective microbiotas of the consumer. Here, we present the first metagenomic analysis of select smokeless tobacco products, specifically US domestic moist and dry snuff. Bacterial, eukaryotic, and viral species were found in all tobacco products where 68% of the total species was comprised of Bacteria with 3 dominant phyla but also included 32% Eukarya and 1% share abundance for Archaea and Viruses. Furthermore, 693,318 genes were found to be present and included nitrate and nitrite reduction and transport enzymes, antibiotic resistance genes associated with resistance to vancomycin, ß-lactamases, their derivatives, and other antibiotics, as well as genes encoding multi-drug transporters and efflux pumps. Additional analyses showed the presence of endo- and exotoxin genes in addition to other molecules associated with inflammatory responses. Our results present a novel aspect of the smokeless tobacco microbiome and provide a better understanding of these products' microbiology. KEY POINTS: • The findings presented will help understand microbial contributions to overall STP chemistries. • Gene function categorization reveals harmful constituents outside canonical forms. • Pathway genes for TSNA precursor activity may occur at early stages of production. • Bacteria in STPs carry antibiotic resistance genes and gene transfer mechanisms.


Asunto(s)
Microbiota , Tabaco sin Humo , Bacterias/genética , Metagenoma , Metagenómica , Nicotiana
2.
Appl Microbiol Biotechnol ; 104(2): 751-763, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31820070

RESUMEN

Smokeless tobacco (ST) products are used worldwide and are a major public health concern. In addition to harmful chemicals found in these products, microbes found in ST products are believed to be responsible for generating harmful tobacco-specific nitrosamines (TSNAs), the most abundant carcinogens in ST. These microbes also contribute endotoxins and other pro-inflammatory components. A greater understanding of the microbial constituents in these products is sought in order to potentially link select design aspects or manufacturing processes to avoidable increases in harmful constituents. Previous studies looked primarily at bacterial constituents and had not differentiated between viable vs nonviable organisms, so in this study, we sought to use a dual metatranscriptomic and metagenomic analysis to see if differences exist. Using high-throughput sequencing, we observed that there were differences in taxonomic abundances between the metagenome and metatranscriptome, and in the metatranscriptome, we also observed an abundance of plant virus RNA not previously reported in DNA-only studies. We also found in the product tested, that there were no viable bacteria capable of metabolizing nitrate to nitrite. Therefore, the product tested would not be likely to increase TSNAs during shelf storage. We tested only a single product to date using the strategy presented here, but succeeded in demonstrating the value of using of these methods in tobacco products. These results present novel findings from the first combined metagenome and metatranscriptome of a commercial tobacco product.


Asunto(s)
Perfilación de la Expresión Génica , Metagenómica , Microbiota , Tabaco sin Humo/microbiología , Bacterias/metabolismo , Biotransformación , ADN Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Nitratos/metabolismo , Nitritos/metabolismo , ARN Bacteriano/análisis , ARN Bacteriano/genética , ARN Viral/análisis , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA