Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Epidemiol ; 6(3): e211, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35702499

RESUMEN

Background: The Deepwater Horizon Oil Spill was an environmental crisis for which multiple groups, including the United States Coast Guard (USCG), provided emergency response services. A cohort of 5,665 USCG oil spill responders completed postdeployment surveys eliciting information on a variety of topics, including oil spill-related exposures and experiences. Our objective was to determine the most common exposure patterns among USCG responders. Methods: We used latent class analysis based on six indicator variables reflecting different aspects of the responders' experiences: exposure to oil, exposure to engine exhaust fumes or carbon monoxide, hand sanitizer use, sunblock use, mosquito bites, and level of anxiety. We validated our interpretation of these latent classes using ancillary variables. Results: The model distinguished four distinct exposure profiles, which we interpreted as "low overall exposure" (prevalence estimate = 0.18), "low crude oil/exhaust and moderate time outdoors/anxiety (prevalence estimate = 0.18), "high crude oil/exhaust and moderate time outdoors/anxiety" (prevalence estimate = 0.25), and "high overall exposure" (prevalence estimate = 0.38). The validation analysis was consistent with our interpretation of the latent classes. Conclusions: The exposure patterns identified in this analysis can help inform future studies of the health impacts of exposure mixtures among USCG oil spill responders.

2.
Artículo en Inglés | MEDLINE | ID: mdl-28210219

RESUMEN

The cholinergic system has extensive projections to the olfactory bulb (OB) where it produces a state-dependent regulation of sensory gating. Previous work has shown a prominent role of muscarinic acetylcholine (ACh) receptors (mAChRs) in regulating the excitability of OB neurons, in particular the M1 receptor. Here, we examined the contribution of M1 and M3 mAChR subtypes to olfactory processing using mice with a genetic deletion of these receptors, the M1-/- and the M1/M3-/- knockout (KO) mice. Genetic ablation of the M1 and M3 mAChRs resulted in a significant deficit in odor discrimination of closely related molecules, including stereoisomers. However, the discrimination of dissimilar molecules, social odors (e.g., urine) and novel object recognition was not affected. In addition the KO mice showed impaired learning in an associative odor-learning task, learning to discriminate odors at a slower rate, indicating that both short and long-term memory is disrupted by mAChR dysfunction. Interestingly, the KO mice exhibited decreased olfactory neurogenesis at younger ages, a deficit that was not maintained in older animals. In older animals, the olfactory deficit could be restored by increasing the number of new born neurons integrated into the OB after exposing them to an olfactory enriched environment, suggesting that muscarinic modulation and adult neurogenesis could be two different mechanism used by the olfactory system to improve olfactory processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA