Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Nat Metab ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333384

RESUMEN

The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by hepatic lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation. Here we show that AGXT is suppressed and LDHA is activated in livers from patients and mice with MASH, leading to oxalate overproduction. In turn, oxalate promotes steatosis in hepatocytes by inhibiting peroxisome proliferator-activated receptor-α (PPARα) transcription and fatty acid ß-oxidation and induces monocyte chemotaxis via C-C motif chemokine ligand 2. In male mice with diet-induced MASH, targeting oxalate overproduction through hepatocyte-specific AGXT overexpression or pharmacological inhibition of LDHA potently lowers steatohepatitis and fibrosis by inducing PPARα-driven fatty acid ß-oxidation and suppressing monocyte chemotaxis, nuclear factor-κB and transforming growth factor-ß targets. These findings highlight hepatic oxalate overproduction as a target for the treatment of MASH.

2.
JACC Adv ; 3(7): 100840, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39130045

RESUMEN

Background: Methamphetamine is an emerging drug threat. The disparity in cardiomyopathy-associated hospital admissions among methamphetamine users (CAHMA) over the decade remains unknown. Objectives: The purpose of this study was to determine the trends and prevalence of CAHMA by age, sex, race, and geographical region. Methods: We used data from 2008 to 2020 from the National Inpatient Sample database. We identified 12,845,919 cardiomyopathy-associated hospital admissions; among them, 222,727 were diagnosed as methamphetamine users. A generalized linear model with binomial link function was used to compute the prevalence ratio and 95% CI. Those who used other substances along with methamphetamine were excluded from the analysis. Results: CAHMA increased by 231% (P trend <0.001) from 2008 to 2020. CAHMA increased 345% for men (P trend <0.001) and 122% for women (P trend <0.001), 271% for non-Hispanic White (P trend <0.001), 254% for non-Hispanic Black (p trend <0.001), 565% for Hispanic (P trend <0.001), and 645% for non-Hispanic Asian (P trend <0.001) population. CAHMA also increased significantly in the West region (530%) (P trend <0.001) and South region (200%) (P trend <0.001) of the United States. Men, Hispanic population, age groups 26 to 40 and 41 to 64 years, and Western regions showed a significantly higher uptrend than their counterparts (P trend <0.001). Conclusions: CAHMA have increased significantly in the United States. Men, Hispanics, non-Hispanic Asian, age groups 41 to 64. and western regions showed a higher proportional increase highlighting gender-based, racial/ethnic, and regional disparities over the study period.

3.
Sci Rep ; 14(1): 16715, 2024 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030247

RESUMEN

Alzheimer's Disease (AD) is a progressive neurodegenerative disease caused by the deposition of Aß aggregates or neurofibrillary tangles. AD patients are primarily diagnosed with the concurrent development of several cardiovascular dysfunctions. While few studies have indicated the presence of intramyocardial Aß aggregates, none of the studies have performed detailed analyses for pathomechanism of cardiac dysfunction in AD patients. This manuscript used aged APPSWE/PS1 Tg and littermate age-matched wildtype (Wt) mice to characterize cardiac dysfunction and analyze associated pathophysiology. Detailed assessment of cardiac functional parameters demonstrated the development of diastolic dysfunction in APPSWE/PS1 Tg hearts compared to Wt hearts. Muscle function evaluation showed functional impairment (decreased exercise tolerance and muscle strength) in APPSWE/PS1 Tg mice. Biochemical and histochemical analysis revealed Aß aggregate accumulation in APPSWE/PS1 Tg mice myocardium. APPSWE/PS1 Tg mice hearts also demonstrated histopathological remodeling (increased collagen deposition and myocyte cross-sectional area). Additionally, APPSWE/PS1 Tg hearts showed altered mitochondrial dynamics, reduced antioxidant protein levels, and impaired mitochondrial proteostasis compared to Wt mice. APPSWE/PS1 Tg hearts also developed mitochondrial dysfunction with decreased OXPHOS and PDH protein complex expressions, altered ETC complex dynamics, decreased complex activities, and reduced mitochondrial respiration. Our results indicated that Aß aggregates in APPSWE/PS1 Tg hearts are associated with defects in mitochondrial respiration and complex activities, which may collectively lead to cardiac diastolic dysfunction and myocardial pathological remodeling.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Péptidos beta-Amiloides/metabolismo , Miocardio/metabolismo , Miocardio/patología , Mitocondrias/metabolismo , Diástole , Humanos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Masculino
4.
medRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38947006

RESUMEN

Heart disease is the leading cause of death worldwide, and cardiac function as measured by ejection fraction (EF) is an important determinant of outcomes, making accurate measurement a critical parameter in PT evaluation. Echocardiograms are commonly used for measuring EF, but human interpretation has limitations in terms of intra- and inter-observer (or reader) variance. Deep learning (DL) has driven a resurgence in machine learning, leading to advancements in medical applications. We introduce the ViViEchoformer DL approach, which uses a video vision transformer to directly regress the left ventricular function (LVEF) from echocardiogram videos. The study used a dataset of 10,030 apical-4-chamber echocardiography videos from patients at Stanford University Hospital. The model accurately captures spatial information and preserves inter-frame relationships by extracting spatiotemporal tokens from video input, allowing for accurate, fully automatic EF predictions that aid human assessment and analysis. The ViViEchoformer's prediction of ejection fraction has a mean absolute error of 6.14%, a root mean squared error of 8.4%, a mean squared log error of 0.04, and an R 2 of 0.55. ViViEchoformer predicted heart failure with reduced ejection fraction (HFrEF) with an area under the curve of 0.83 and a classification accuracy of 87 using a standard threshold of less than 50% ejection fraction. Our video-based method provides precise left ventricular function quantification, offering a reliable alternative to human evaluation and establishing a fundamental basis for echocardiogram interpretation.

5.
Front Cardiovasc Med ; 11: 1412867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022622

RESUMEN

Background: Peripheral artery disease (PAD) is on the rise worldwide, ranking as the third leading cause of atherosclerosis-related morbidity; much less is known about its trends in hospitalizations among methamphetamine and cocaine users. Objectives: We aim to evaluate the overall trend in the prevalence of hospital admission for PAD with or without the use of stimulant abuse (methamphetamine and cocaine) across the United States. Additionally, we evaluated the PAD-related hospitalizations trend stratified by age, race, sex, and geographic location. Methods: We used the National Inpatient Sample (NIS) database from 2008 to 2020. The Cochran Armitage trend test was used to compare the trend between groups. Multivariate logistic regression was used to examine adjusted odds for PAD and CLI hospitalizations among methamphetamine and cocaine users. Results: Between 2008 and 2020, PAD-related hospitalizations showed an increasing trend in Hispanics, African Americans, and western states, while a decreasing trend in southern and Midwestern states (p-trend <0.05). Among methamphetamine users, an overall increasing trend was observed in men, women, western, southern, and midwestern states (p-trend <0.05). However, among cocaine users, PAD-related hospitalization increased significantly for White, African American, age group >64 years, southern and western states (p-trend <0.05). Overall, CLI-related hospitalizations showed an encouraging decreasing trend in men and women, age group >64 years, and CLI-related amputations declined for women, White patient population, age group >40, and all regions (p-trend <0.05). However, among methamphetamine users, a significantly increasing trend in CLI-related hospitalization was seen in men, women, White & Hispanic population, age group 26-45, western, southern, and midwestern regions. Conclusions: There was an increasing trend in PAD-related hospitalizations among methamphetamine and cocaine users for both males and females. Although an overall decreasing trend in CLI-related hospitalization was observed for both genders, an up-trend in CLI was seen among methamphetamine users. The upward trends were more prominent for White, Hispanic & African Americans, and southern and western states, highlighting racial and geographic variations over the study period.

6.
Front Physiol ; 15: 1386296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742156

RESUMEN

Sigmar1 is a ubiquitously expressed, multifunctional protein known for its cardioprotective roles in cardiovascular diseases. While accumulating evidence indicate a critical role of Sigmar1 in cardiac biology, its physiological function in the vasculature remains unknown. In this study, we characterized the expression of Sigmar1 in the vascular wall and assessed its physiological function in the vascular system using global Sigmar1 knockout (Sigmar1-/-) mice. We determined the expression of Sigmar1 in the vascular tissue using immunostaining and biochemical experiments in both human and mouse blood vessels. Deletion of Sigmar1 globally in mice (Sigmar1-/-) led to blood vessel wall reorganizations characterized by nuclei disarray of vascular smooth muscle cells, altered organizations of elastic lamina, and higher collagen fibers deposition in and around the arteries compared to wildtype littermate controls (Wt). Vascular function was assessed in mice using non-invasive time-transit method of aortic stiffness measurement and flow-mediated dilation (FMD) of the left femoral artery. Sigmar1-/- mice showed a notable increase in arterial stiffness in the abdominal aorta and failed to increase the vessel diameter in response to reactive-hyperemia compared to Wt. This was consistent with reduced plasma and tissue nitric-oxide bioavailability (NOx) and decreased phosphorylation of endothelial nitric oxide synthase (eNOS) in the aorta of Sigmar1-/- mice. Ultrastructural analysis by transmission electron microscopy (TEM) of aorta sections showed accumulation of elongated shaped mitochondria in both vascular smooth muscle and endothelial cells of Sigmar1-/- mice. In accordance, decreased mitochondrial respirometry parameters were found in ex-vivo aortic rings from Sigmar1 deficient mice compared to Wt controls. These data indicate a potential role of Sigmar1 in maintaining vascular homeostasis.

7.
Sci Rep ; 14(1): 8996, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637671

RESUMEN

Alzheimer's disease (AD), a neurodegenerative disease that mostly affects the elderly, slowly impairs memory, cognition, and daily tasks. AD has long been one of the most debilitating chronic neurological disorders, affecting mostly people over 65. In this study, we investigated the use of Vision Transformer (ViT) for Magnetic Resonance Image processing in the context of AD diagnosis. ViT was utilized to extract features from MRIs, map them to a feature sequence, perform sequence modeling to maintain interdependencies, and classify features using a time series transformer. The proposed model was evaluated using ADNI T1-weighted MRIs for binary and multiclass classification. Two data collections, Complete 1Yr 1.5T and Complete 3Yr 3T, from the ADNI database were used for training and testing. A random split approach was used, allocating 60% for training and 20% for testing and validation, resulting in sample sizes of (211, 70, 70) and (1378, 458, 458), respectively. The performance of our proposed model was compared to various deep learning models, including CNN with BiL-STM and ViT with Bi-LSTM. The suggested technique diagnoses AD with high accuracy (99.048% for binary and 99.014% for multiclass classification), precision, recall, and F-score. Our proposed method offers researchers an approach to more efficient early clinical diagnosis and interventions.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Anciano , Enfermedad de Alzheimer/patología , Enfermedades Neurodegenerativas/patología , Imagen por Resonancia Magnética/métodos , Neuroimagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología
8.
Redox Biol ; 70: 103085, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38359746

RESUMEN

Endothelial dysfunction and endothelial activation are common early events in vascular diseases and can arise from mitochondrial dysfunction. Neurogranin (Ng) is a 17kD protein well known to regulate intracellular Ca2+-calmodulin (CaM) complex signaling, and its dysfunction is significantly implicated in brain aging and neurodegenerative diseases. We found that Ng is also expressed in human aortic endothelial cells (HAECs), and depleting Ng promotes Ca2+-CaM complex-dependent endothelial activation and redox imbalances. Endothelial-specific Ng knockout (Cre-CDH5-Ngf/f) mice demonstrate a significant delay in the flow-mediated dilation (FMD) response. Therefore, it is critical to characterize how endothelial Ng expression regulates reactive oxygen species (ROS) generation and affects cardiovascular disease. Label-free quantification proteomics identified that mitochondrial dysfunction and the oxidative phosphorylation pathway are significantly changed in the aorta of Cre-CDH5-Ngf/f mice. We found that a significant amount of Ng is expressed in the mitochondrial fraction of HAECs using western blotting and colocalized with the mitochondrial marker, COX IV, using immunofluorescence staining. Seahorse assay demonstrated that a lack of Ng decreases mitochondrial respiration. Treatment with MitoEbselen significantly restores the oxygen consumption rate in Ng knockdown cells. With the RoGFP-Orp1 approach, we identified that Ng knockdown increases mitochondrial-specific hydrogen peroxide (H2O2) production, and MitoEbselen treatment significantly reduced mitochondrial ROS (mtROS) levels in Ng knockdown cells. These results suggest that Ng plays a significant role in mtROS production. We discovered that MitoEbselen treatment also rescues decreased eNOS expression and nitric oxide (NO) levels in Ng knockdown cells, which implicates the critical role of Ng in mtROS-NO balance in the endothelial cells.


Asunto(s)
Células Endoteliales , Mitocondrias , Neurogranina , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Neurogranina/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
9.
Redox Biol ; 68: 102949, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922764

RESUMEN

Hydropersulfide and hydropolysulfide metabolites are increasingly important reactive sulfur species (RSS) regulating numerous cellular redox dependent functions. Intracellular production of these species is known to occur through RSS interactions or through translational mechanisms involving cysteinyl t-RNA synthetases. However, regulation of these species under cell stress conditions, such as hypoxia, that are known to modulate RSS remain poorly understood. Here we define an important mechanism of increased persulfide and polysulfide production involving cystathionine gamma lyase (CSE) phosphorylation at serine 346 and threonine 355 in a substrate specific manner, under acute hypoxic conditions. Hypoxic phosphorylation of CSE occurs in an AMP kinase dependent manner increasing enzyme activity involving unique inter- and intramolecular interactions within the tetramer. Importantly, both cellular hypoxia and tissue ischemia result in AMP Kinase dependent CSE phosphorylation that regulates blood flow in ischemic tissues. Our findings reveal hypoxia molecular signaling pathways regulating CSE dependent persulfide and polysulfide production impacting tissue and cellular response to stress.


Asunto(s)
Sulfuro de Hidrógeno , Humanos , Sulfuro de Hidrógeno/metabolismo , Fosforilación , Adenilato Quinasa/metabolismo , Cistationina gamma-Liasa/genética , Hipoxia
10.
Psychiatry Res ; 329: 115524, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37852161

RESUMEN

IMPORTANCE: Methamphetamine use is a growing public health concern nationwide. Suicide is the second leading cause of death in 2019 for US citizens aged 10-14 years and 25-34 years and is also a significant public health concern. Understanding the intersection of methamphetamine use and suicidal ideation (SI) is necessary to develop public health and policy solutions that mitigate these ongoing severe public health issues. OBJECTIVE: Our objective was to examine SI in methamphetamine users to allow us to determine prevalence and trends by age, sex, race, and geographical region. DESIGN, SETTINGS, AND PARTICIPANTS: Using data collected between 2008 and 2019 from the National Inpatient Sample (NIS) database, we identified hospital admissions (HA) of patients ≥18 years of age with a primary or secondary diagnosis of SI who were also diagnosed as methamphetamine users. Those who used other substances with methamphetamine were excluded from the analysis. MAIN OUTCOME AND MEASURES: To determine the trend and prevalence of hospital admissions due to SI and SI among methamphetamine users, we used trend weights to calculate the national estimates and performed design-based analysis to account for complex survey design and sampling weights on data collected between 2008 and 2019 in the US. RESULTS: The prevalence ratio (PR) of hospitalizations with concurrent SI and methamphetamine use increased 16-fold from 2008 to 2019. The most significant increase occurred between 2015 and 2016; the PR doubled from 6.07 to 12.14. The PR of hospitalizations with concurrent SI and methamphetamine use was highest in patients aged 26-40 (49.08%) and 41-64 (28.49%). Patients aged 41-64 showed the most significant increase from 2008 to 2019 (15.8-fold). While non-Hispanic White patients comprised most of these hospitalizations (77.02%), non-Hispanic Black patients showed the highest proportional increase (39.1-fold). The Southern and Western regions in the US showed the highest PR for these hospitalizations (34.86% and 34.31%, respectively). CONCLUSION AND RELEVANCE: Our findings indicate that SI in methamphetamine users has been increasing for some time and is likely to grow. In addition, our results suggest that these patients are demographically different. Both conditions are associated with a lesser likelihood of seeking and receiving care. Therefore, when addressing increased SI or methamphetamine use, learning more about patients who share both conditions is necessary to ensure proper care.


Asunto(s)
Metanfetamina , Suicidio , Humanos , Estados Unidos/epidemiología , Adolescente , Ideación Suicida , Metanfetamina/efectos adversos , Etnicidad , Estudios Longitudinales , Prevalencia
11.
Endocrinology ; 164(11)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37738419

RESUMEN

Glucocorticoids acting via the glucocorticoid receptors (GR) are key regulators of metabolism and the stress response. However, uncontrolled or excessive GR signaling adversely affects adipose tissue, including endocrine, immune, and metabolic functions. Inflammation of the adipose tissue promotes systemic metabolic dysfunction; however, the molecular mechanisms underlying the role of adipocyte GR in regulating genes associated with adipose tissue inflammation are poorly understood. We performed in vivo studies using adipocyte-specific GR knockout mice in conjunction with in vitro studies to understand the contribution of adipocyte GR in regulating adipose tissue immune homeostasis. Our findings show that adipocyte-specific GR signaling regulates adipokines at both mRNA and plasma levels and immune regulatory (Coch, Pdcd1, Cemip, and Cxcr2) mRNA gene expression, which affects myeloid immune cell presence in white adipose tissue. We found that, in adipocytes, GR directly influences Cxcr2. This chemokine receptor promotes immune cell migration, indirectly affecting Pdcd1 and Cemip gene expression in nonadipocyte or stromal cells. Our findings suggest that GR adipocyte signaling suppresses inflammatory signals, maintaining immune homeostasis. We also found that GR signaling in adipose tissue in response to stress is sexually dimorphic. Understanding the molecular relationship between GR signaling and adipose tissue inflammation could help develop potential targets to improve local and systemic inflammation, insulin sensitivity, and metabolic health.


Asunto(s)
Tejido Adiposo , Receptores de Glucocorticoides , Ratones , Animales , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Inflamación/genética , Inflamación/metabolismo , Homeostasis/genética , Ratones Noqueados , Genes Reguladores , ARN Mensajero/metabolismo
12.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37446174

RESUMEN

Mental stress is a risk factor for myocardial infarction in women. The central hypothesis of this study is that restraint stress induces sex-specific changes in gene expression in the heart, which leads to an intensified response to ischemia/reperfusion injury due to the development of a pro-oxidative environment in female hearts. We challenged male and female C57BL/6 mice in a restraint stress model to mimic the effects of mental stress. Exposure to restraint stress led to sex differences in the expression of genes involved in cardiac hypertrophy, inflammation, and iron-dependent cell death (ferroptosis). Among those genes, we identified tumor protein p53 and cyclin-dependent kinase inhibitor 1A (p21), which have established controversial roles in ferroptosis. The exacerbated response to I/R injury in restraint-stressed females correlated with downregulation of p53 and nuclear factor erythroid 2-related factor 2 (Nrf2, a master regulator of the antioxidant response system-ARE). S-female hearts also showed increased superoxide levels, lipid peroxidation, and prostaglandin-endoperoxide synthase 2 (Ptgs2) expression (a hallmark of ferroptosis) compared with those of their male counterparts. Our study is the first to test the sex-specific impact of restraint stress on the heart in the setting of I/R and its outcome.


Asunto(s)
Lesiones Cardíacas , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratones , Femenino , Masculino , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Estrés Oxidativo , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Expresión Génica , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
14.
Front Physiol ; 14: 1118770, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051024

RESUMEN

Sigma1 receptor protein (Sigmar1) is a small, multifunctional molecular chaperone protein ubiquitously expressed in almost all body tissues. This protein has previously shown its cardioprotective roles in rodent models of cardiac hypertrophy, heart failure, and ischemia-reperfusion injury. Extensive literature also suggested its protective functions in several central nervous system disorders. Sigmar1's molecular functions in the pulmonary system remained unknown. Therefore, we aimed to determine the expression of Sigmar1 in the lungs. We also examined whether Sigmar1 ablation results in histological, ultrastructural, and biochemical changes associated with lung pathology over aging in mice. In the current study, we first confirmed the presence of Sigmar1 protein in human and mouse lungs using immunohistochemistry and immunostaining. We used the Sigmar1 global knockout mouse (Sigmar1-/-) to determine the pathophysiological role of Sigmar1 in lungs over aging. The histological staining of lung sections showed altered alveolar structures, higher immune cells infiltration, and upregulation of inflammatory markers (such as pNFκB) in Sigmar1-/- mice compared to wildtype (Wt) littermate control mice (Wt). This indicates higher pulmonary inflammation resulting from Sigmar1 deficiency in mice, which was associated with increased pulmonary fibrosis. The protein levels of some fibrotic markers, fibronectin, and pSMAD2 Ser 245/250/255 and Ser 465/467, were also elevated in mice lungs in the absence of Sigmar1 compared to Wt. The ultrastructural analysis of lungs in Wt mice showed numerous multilamellar bodies of different sizes with densely packed lipid lamellae and mitochondria with a dark matrix and dense cristae. In contrast, the Sigmar1-/- mice lung tissues showed altered multilamellar body structures in alveolar epithelial type-II pneumocytes with partial loss of lipid lamellae structures in the lamellar bodies. This was further associated with higher protein levels of all four surfactant proteins, SFTP-A, SFTP-B, SFTP-C, and SFTP-D, in the Sigmar1-/- mice lungs. This is the first study showing Sigmar1's expression pattern in human and mouse lungs and its association with lung pathophysiology. Our findings suggest that Sigmar1 deficiency leads to increased pulmonary inflammation, higher pulmonary fibrosis, alterations of the multilamellar body stuructures, and elevated levels of lung surfactant proteins.

15.
Redox Biol ; 62: 102633, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924684

RESUMEN

Emerging evidence indicates that vascular stress is an important contributor to the pathophysiology of Alzheimer's disease and related dementias (ADRD). Hydrogen sulfide (H2S) and its metabolites (acid-labile (e.g., iron-sulfur clusters) and bound (e.g., per-, poly-) sulfides) have been shown to modulate both vascular and neuronal homeostasis. We recently reported that elevated plasma sulfides were associated with cognitive dysfunction and measures of microvascular disease in ADRD. Here we extend our previous work to show associations between elevated sulfides and magnetic resonance-based metrics of brain atrophy and white matter integrity. Elevated bound sulfides were associated with decreased grey matter volume, while increased acid labile sulfides were associated with decreased white matter integrity and greater ventricular volume. These findings are consistent with alterations in sulfide metabolism in ADRD which may represent maladaptive responses to oxidative stress.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/metabolismo , Sulfuros/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Corteza Cerebral/metabolismo , Atrofia/complicaciones , Atrofia/metabolismo , Atrofia/patología , Encéfalo/metabolismo
16.
Crit Care ; 27(1): 34, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691080

RESUMEN

BACKGROUND: Recent single-center reports have suggested that community-acquired bacteremic co-infection in the context of Coronavirus disease 2019 (COVID-19) may be an important driver of mortality; however, these reports have not been validated with a multicenter, demographically diverse, cohort study with data spanning the pandemic. METHODS: In this multicenter, retrospective cohort study, inpatient encounters were assessed for COVID-19 with community-acquired bacteremic co-infection using 48-h post-admission blood cultures and grouped by: (1) confirmed co-infection [recovery of bacterial pathogen], (2) suspected co-infection [negative culture with ≥ 2 antimicrobials administered], and (3) no evidence of co-infection [no culture]. The primary outcomes were in-hospital mortality, ICU admission, and mechanical ventilation. COVID-19 bacterial co-infection risk factors and impact on primary outcomes were determined using multivariate logistic regressions and expressed as adjusted odds ratios with 95% confidence intervals (Cohort, OR 95% CI, Wald test p value). RESULTS: The studied cohorts included 13,781 COVID-19 inpatient encounters from 2020 to 2022 in the University of Alabama at Birmingham (UAB, n = 4075) and Ochsner Louisiana State University Health-Shreveport (OLHS, n = 9706) cohorts with confirmed (2.5%), suspected (46%), or no community-acquired bacterial co-infection (51.5%) and a comparison cohort consisting of 99,170 inpatient encounters from 2010 to 2019 (UAB pre-COVID-19 pandemic cohort). Significantly increased likelihood of COVID-19 bacterial co-infection was observed in patients with elevated ≥ 15 neutrophil-to-lymphocyte ratio (UAB: 1.95 [1.21-3.07]; OLHS: 3.65 [2.66-5.05], p < 0.001 for both) within 48-h of hospital admission. Bacterial co-infection was found to confer the greatest increased risk for in-hospital mortality (UAB: 3.07 [2.42-5.46]; OLHS: 4.05 [2.29-6.97], p < 0.001 for both), ICU admission (UAB: 4.47 [2.87-7.09], OLHS: 2.65 [2.00-3.48], p < 0.001 for both), and mechanical ventilation (UAB: 3.84 [2.21-6.12]; OLHS: 2.75 [1.87-3.92], p < 0.001 for both) across both cohorts, as compared to other risk factors for severe disease. Observed mortality in COVID-19 bacterial co-infection (24%) dramatically exceeds the mortality rate associated with community-acquired bacteremia in pre-COVID-19 pandemic inpatients (5.9%) and was consistent across alpha, delta, and omicron SARS-CoV-2 variants. CONCLUSIONS: Elevated neutrophil-to-lymphocyte ratio is a prognostic indicator of COVID-19 bacterial co-infection within 48-h of admission. Community-acquired bacterial co-infection, as defined by blood culture-positive results, confers greater increased risk of in-hospital mortality, ICU admission, and mechanical ventilation than previously described risk factors (advanced age, select comorbidities, male sex) for COVID-19 mortality, and is independent of SARS-CoV-2 variant.


Asunto(s)
Bacteriemia , COVID-19 , Coinfección , Infecciones Comunitarias Adquiridas , Humanos , Masculino , SARS-CoV-2 , Estudios de Cohortes , Estudios Retrospectivos , Respiración Artificial , Pandemias , Mortalidad Hospitalaria , Bacterias , Factores de Riesgo , Unidades de Cuidados Intensivos
17.
Environ Res ; 222: 115351, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709030

RESUMEN

Wastewater surveillance has proven to be a useful tool for evidence-based epidemiology in the fight against the SARS-CoV-2 virus. It is particularly useful at the population level where acquisition of individual test samples may be time or cost-prohibitive. Wastewater surveillance for SARS-CoV-2 has typically been performed at wastewater treatment plants; however, this study was designed to sample on a local level to monitor the spread of the virus among three communities with distinct social vulnerability indices in Shreveport, Louisiana, located in a socially vulnerable region of the United States. Twice-monthly grab samples were collected from September 30, 2020, to March 23, 2021, during the Beta wave of the pandemic. The goals of the study were to examine whether: 1) concentrations of SARS-CoV-2 RNA in wastewater varied with social vulnerability indices and, 2) the time lag of spikes differed during wastewater monitoring in the distinct communities. The size of the population contributing to each sample was assessed via the quantification of the pepper mild mottle virus (PMMoV), which was significantly higher in the less socially vulnerable community. We found that the communities with higher social vulnerability exhibited greater viral loads as assessed by wastewater when normalized with PMMoV (Kruskal-Wallis, p < 0.05). The timing of the spread of the virus through the three communities appeared to be similar. These results suggest that interconnected communities within a municipality experienced the spread of the SARS-CoV-2 virus at similar times, but areas of high social vulnerability experienced more intense wastewater viral loads.


Asunto(s)
COVID-19 , Humanos , ARN Viral , SARS-CoV-2 , Carga Viral , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
18.
GeoJournal ; 88(3): 3239-3248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36531533

RESUMEN

Using data from the Louisiana Department of Public Health, we explored the spatial relationships between the Social Vulnerability Index (SVI) and COVID-19-related vaccination and mortality rates. Publicly available COVID-19 vaccination and mortality data accrued from December 2020 to October 2021 was downloaded from the Louisiana Department of Health website and merged with the SVI data; geospatial analysis was then performed to identify the spatial association between the SVI and vaccine uptake and mortality rate. Bivariate Moran's I analysis revealed significant clustering of high SVI ranking with low COVID-19 vaccination rates (1.00, p < 0.001) and high smoothed mortality rates (0.61, p < 0.001). Regression revealed that for each 10% increase in SVI ranking, COVID-19 vaccination rates decreased by 3.02-fold (95% CI = 3.73-2.30), and mortality rates increased by a factor of 1.19 (95% CI = 0.99-1.43). SVI values are spatially linked and significantly associated with Louisiana's COVID-19-related vaccination and mortality rates. We also found that vaccination uptake was higher in whites than in blacks. These findings can help identify regions with low vaccination rates and high mortality, enabling the necessary steps to increase vaccination rates in disadvantaged neighborhoods.

19.
Nat Rev Cardiol ; 20(2): 109-125, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35931887

RESUMEN

Hydrogen sulfide (H2S) has emerged as a gaseous signalling molecule with crucial implications for cardiovascular health. H2S is involved in many biological functions, including interactions with nitric oxide, activation of molecular signalling cascades, post-translational modifications and redox regulation. Various preclinical and clinical studies have shown that H2S and its synthesizing enzymes - cystathionine γ-lyase, cystathionine ß-synthase and 3-mercaptosulfotransferase - can protect against cardiovascular pathologies, including arrhythmias, atherosclerosis, heart failure, myocardial infarction and ischaemia-reperfusion injury. The bioavailability of H2S and its metabolites, such as hydropersulfides and polysulfides, is substantially reduced in cardiovascular disease and has been associated with single-nucleotide polymorphisms in H2S synthesis enzymes. In this Review, we highlight the role of H2S, its synthesizing enzymes and metabolites, their roles in the cardiovascular system, and their involvement in cardiovascular disease and associated pathologies. We also discuss the latest clinical findings from the field and outline areas for future study.


Asunto(s)
Insuficiencia Cardíaca , Sulfuro de Hidrógeno , Infarto del Miocardio , Humanos , Sulfuros , Sulfuro de Hidrógeno/metabolismo , Corazón
20.
Muscles ; 2(1): 51-74, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38516553

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a complex systemic disease that primarily involves motor neuron dysfunction and skeletal muscle atrophy. One commonly used mouse model to study ALS was generated by transgenic expression of a mutant form of human superoxide dismutase 1 (SOD1) gene harboring a single amino acid substitution of glycine to alanine at codon 93 (G93A*SOD1). Although mutant-SOD1 is ubiquitously expressed in G93A*SOD1 mice, a detailed analysis of the skeletal muscle expression pattern of the mutant protein and the resultant muscle pathology were never performed. Using different skeletal muscles isolated from G93A*SOD1 mice, we extensively characterized the pathological sequelae of histological, molecular, ultrastructural, and biochemical alterations. Muscle atrophy in G93A*SOD1 mice was associated with increased and differential expression of mutant-SOD1 across myofibers and increased MuRF1 protein level. In addition, high collagen deposition and myopathic changes sections accompanied the reduced muscle strength in the G93A*SOD1 mice. Furthermore, all the muscles in G93A*SOD1 mice showed altered protein levels associated with different signaling pathways, including inflammation, mitochondrial membrane transport, mitochondrial lipid uptake, and antioxidant enzymes. In addition, the mutant-SOD1 protein was found in the mitochondrial fraction in the muscles from G93A*SOD1 mice, which was accompanied by vacuolized and abnormal mitochondria, altered OXPHOS and PDH complex protein levels, and defects in mitochondrial respiration. Overall, we reported the pathological sequelae observed in the skeletal muscles of G93A*SOD1 mice resulting from the whole-body mutant-SOD1 protein expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA