Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Curr Top Med Chem ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39350415

RESUMEN

AIMS: The aim of the current study was to explore the anti-diabetic potential of Ochradenus aucheri Boiss (O. aucheri). METHOD: All the fractions of O. aucheri were evaluated for α-glucosidase inhibition, followed by bioassay-guided isolation which resulted in a new sesquiterpenoid, as a potential α-glucosidase inhibitor. RESULTS: The preliminary screening showed that all the fractions including n-hexane (38.0 ± 1.38 µg/mL), dichloromethane (92.6 ± 6.18 µg/mL), ethyl acetate (29.2 ± 0.51 µg/mL) and n-butanol (361.8 ± 5.80 µg/mL) displayed significant α-glucosidase inhibitory activity. The activity-directed fractionation and purification of ethyl acetate fraction led to the isolation of one new sesquiterpenoid, Jardenol (1), and two known metabolites: ß-stitosterol-3-O-ß-D-glucopyranoside (2) and ß-Sitosterol (3). To the best of our knowledge, these metabolites have not been isolated from this plant previously. The structure of the new metabolite 1 was confirmed through 1D and 2D NMR spectroscopy, and MS analysis. Compound 1 showed significant α-glucosidase inhibition with an IC50 value of 138.2 ± 2.43 µg/mL as compared to positive control acarbose (IC50 = 942.0 ± 0.60 µg/mL). Additionally, in-silico docking was employed to predict the binding mechanism of compound 1 in the active site of the target enzyme, α-glucosidase. The docking results suggested that the compound forms strong interactions at the catalytic site of α-glucosidase. CONCLUSION: The results of the present study indicated that the newly purified secondary metabolite, Jardenol, can be a promising anti-diabetic compound.

2.
Microb Pathog ; 196: 106919, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245422

RESUMEN

A priori, early exposure to a wide range of bacteria, viruses, and parasites appears to fortify and regulate the immune system, potentially reducing the risk of autoimmune diseases. However, improving hygiene conditions in numerous societies has led to a reduction in these microbial exposures, which, according to certain theories, could contribute to an increase in autoimmune diseases. Indeed, molecular mimicry is a key factor triggering immune system reactions; while it seeks pathogens, it can bind to self-molecules, leading to autoimmune diseases associated with microbial infections. On the other hand, a hygiene-based approach aimed at reducing the load of infectious agents through better personal hygiene can be beneficial for such pathologies. This review sheds light on how the evolution of the innate immune system, following the evolution of molecular patterns associated with microbes, contributes to our protection but may also trigger autoimmune diseases linked to microbes. Furthermore, it addresses how hygiene conditions shield us against autoimmune diseases related to microbes but may lead to autoimmune pathologies not associated with microbes.

3.
Nat Prod Res ; : 1-9, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340238

RESUMEN

Inflammation is associated with multiple life-threatening conditions. Desmidorchis flava is an edible plant and traditionally used for managing various diseases. Three novel molecules, namely desmiflavaside-C (1), nizwaside (2), and desmiflanoside (3) were isolated from Desmidorchis flava, and their structures were confirmed by mass spectrometry and through reported literature. These compounds were in vivo examined for antinociceptive (tonic visceral nociception) and anti-inflammatory (carrageenan induced paw edema) activities. Significant antinociceptive potential was demonstrated by compound 1 at 0.5 and 1 mg/kg doses followed by compounds 2 and 3. At similar doses, significant anti-inflammatory activity was noted for all the tested compounds. Their antinociceptive and anti-inflammatory activities were comparable to the reference standards. In silico predicted binding modes suggests that these compounds may target allosteric sites of COX-1 and COX-2 enzymes to elicit their anti-inflammatory activities. These isolated natural products may have therapeutic potential in conditions afflicted with pain and inflammation.

4.
Heliyon ; 10(17): e36895, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286085

RESUMEN

Essential oils are key ingredients in the development of edible films and provide a diverse approach to improving food preservation, as well as sensory qualities. The pectin and kappa-carrageenan composite films were obtained by adding peppermint essential oil in different quantities. The films after their fabrication were thoroughly evaluated for their attributes, which included mechanical, barrier, optical, chemical, thermal, and antioxidant properties. The visual assessment of the films demonstrated that PEO-loaded films showed a uniform, homogenous, and slightly yellowish appearance. There was an increase in the thickness (0.045 ± 0.006 to 0.060 ± 0.008 mm), elongation at break (12.73 ± 0.74 to 25.05 ± 1.33 %), and water vapor permeability (0.447 ± 0.014 to 0.643 ± 0.014 (g*mm)/(m2*h*kPa)) was observed with the addition of PEO. However, tensile strength (45.84 ± 3.69 to 29.80 ± 2.10 MPa) and moisture content (25.83 ± 0.046 to 21.82 ± 0.23 %) decreased with the incorporation of PEO. Furthermore, thermal and antioxidant properties were enhanced by the inclusion of PEO. The presented investigation can be employed to synthesize food packaging material with antioxidant properties with potential applications in food packaging.

5.
Front Chem ; 12: 1445606, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318419

RESUMEN

Monkeypox virus (MPV) infection has developed into a re-emerging disease, and despite the potential of tecovirimat and cidofovir drugs, there is currently no conclusive treatment. The treatment's effectiveness and cost challenges motivate us to use In Silico approaches to seek natural compounds as candidate antiviral inhibitors. Using Maestro 11.5 in Schrodinger suite 2018, available natural molecules with validated chemical structures collected from Eximed Laboratory were subjected to molecular docking and ADMET analysis against the highly conserved A42R Profilin-like Protein of Monkeypox Virus Zaire-96-I-16 (PDB: 4QWO) with resolution of 1.52 Å solved 3D structure. Compared to the FDA-approved Tecovirimat, molecular docking revealed that Salsoline derivatives, Genistein, Semisynthetic derivative of kojic acid, and Naringenin had strengthened affinity (-8.9 to -10 kcal/mol) to 4QWO, and the molecular dynamic's simulation confirmed their high binding stability. In support of these results, the hydrogen bond analysis indicated that the Salsoline derivative had the most robust interaction with the binding pockets of 4QWO among the four molecules. Moreover, the comparative free energy analyses using MM-PBSA revealed an average binding free energy of the complexes of Salsoline derivative, Genistein, Semisynthetic derivative of kojic acid, Naringenin, of -106.418, -46.808, -50.770, and -63.319 kJ/mol, respectively which are lower than -33.855 kJ/mol of the Tecovirimat complex. Interestingly, these results and the ADMET predictions suggest that the four compounds are promising inhibitors of 4QWO, which agrees with previous results showing their antiviral activities against other viruses.

6.
Heliyon ; 10(15): e34410, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170440

RESUMEN

The NOD-Like Receptor Protein-3 (NLRP3) inflammasome is a key therapeutic target for the treatment of epilepsy and has been reported to regulate inflammation in several neurological diseases. In this study, a machine learning-based virtual screening strategy has investigated candidate active compounds that inhibit the NLRP3 inflammasome. As machine learning-based virtual screening has the potential to accurately predict protein-ligand binding and reduce false positives outcomes compared to traditional virtual screening. Briefly, classification models were created using Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (KNN) machine learning methods. To determine the most crucial features of a molecule's activity, feature selection was carried out. By utilizing 10-fold cross-validation, the created models were analyzed. Among the generated models, the RF model obtained the best results as compared to others. Therefore, the RF model was used as a screening tool against the large chemical databases. Molecular operating environment (MOE) and PyRx software's were applied for molecular docking. Also, using the Amber Tools program, molecular dynamics (MD) simulation of potent inhibitors was carried out. The results showed that the KNN, SVM, and RF accuracy was 0.911 %, 0.906 %, and 0.946 %, respectively. Moreover, the model has shown sensitivity of 0.82 %, 0.78 %, and 0.86 % and specificity of 0.95 %, 0.96 %, and 0.98 % respectively. By applying the model to the ZINC and South African databases, we identified 98 and 39 compounds, respectively, potentially possessing anti-NLRP3 activity. Also, a molecular docking analysis produced ten ZINC and seven South African compounds that has comparable binding affinities to the reference drug. Moreover, MD analysis of the two complexes revealed that the two compounds (ZINC000009601348 and SANC00225) form stable complexes with varying amounts of binding energy. The in-silico studies indicate that both compounds most likely display their inhibitory effect by inhibiting the NLRP3 protein.

7.
Acta Parasitol ; 69(3): 1439-1457, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39150581

RESUMEN

BACKGROUND: Leishmaniasis is a deadly protozoan parasitic disease and a significant health problem in underdeveloped and developing countries. The global spread of the parasite, coupled with the emergence of drug resistance and severe side effects associated with existing treatments, has necessitated the identification of new and potential drugs. OBJECTIVE: This study aimed to identify promising compounds for the treatment of leishmaniasis by targeting two essential enzymes of Leishmania donovani: trypanothione reductase (Try-R) and trypanothione synthetase (Try-S). METHODS: High-throughput virtual and in vitro screening of in-house and commercial databases was conducted. A pharmacophore model with seven features was developed and validated using the Guner-Henery method. The pharmacophore-based virtual screening yielded 690 hits, which were further filtered through Lipinski's rule, ADMET analysis, and molecular docking against Try-R and Try-S. Molecular dynamics studies were performed on selected compounds, and in vitro experiments were conducted to evaluate their activity against the promastigote and amastigote forms of L. donovani. RESULTS: The virtual screening and subsequent analysis identified 33 promising compounds. Molecular dynamics studies of two compounds (comp-1 and comp-2) demonstrated stable binding interactions with the target enzymes and high affinity. In vitro experiments revealed that 13 compounds exhibited moderate activity against both the promastigote (IC50, 41 µM-76 µM) and the amastigote (IC50, 44 µM-72 µM) forms of L. donovani. Compounds 1 and 2 showed the highest percent inhibition and the lowest IC50 values. CONCLUSION: The identified compounds demonstrated significant inhibitory activity against Leishmania donovani and stable interactions with target enzymes. These findings suggest that the compounds could serve as promising leads for developing new treatments for leishmaniasis.


Asunto(s)
Antiprotozoarios , Ensayos Analíticos de Alto Rendimiento , Leishmania donovani , Simulación del Acoplamiento Molecular , Leishmania donovani/efectos de los fármacos , Leishmania donovani/enzimología , Antiprotozoarios/farmacología , Antiprotozoarios/química , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/metabolismo , Amida Sintasas/antagonistas & inhibidores , Amida Sintasas/metabolismo , Amida Sintasas/química , Evaluación Preclínica de Medicamentos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Simulación de Dinámica Molecular
8.
Int J Biol Macromol ; 277(Pt 4): 134476, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111477

RESUMEN

The single-stranded RNA genome of SARS-CoV-2 encodes several structural and non-structural proteins, among which the papain-like protease (PLpro) is crucial for viral replication and immune evasion and has emerged as a promising therapeutic target. The current study aims to discover new inhibitors of PLpro that can simultaneously disrupt its protease and deubiquitinase activities. Using multiple computational approaches, six compounds (CP1-CP6) were selected from our in-house compounds database, with higher docking scores (-7.97 kcal/mol to -8.14 kcal/mol) and fitted well in the active pocket of PLpro. Furthermore, utilizing microscale molecular dynamics simulations (MD), the dynamic behavior of selected compounds was studied. Those molecules strongly binds at the PLpro active site and forms stable complexes. The dynamic motions suggest that the binding of CP1-CP6 brought the protein to a closed conformational state, thereby altering its normal function. In an in vitro evaluation, CP2 showed the most significant inhibitory potential for PLpro (protease activity = 2.71 ± 0.33 µM and deubiquitinase activity = 3.11 ± 0.75 µM), followed by CP1, CP5, CP4 and CP6. Additionally, CP1-CP6 showed no cytotoxicity at a concentration of 30 µM in the human BJ cell line.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , Enzimas Desubicuitinizantes , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2 , SARS-CoV-2/enzimología , SARS-CoV-2/efectos de los fármacos , Humanos , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/química , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Dominio Catalítico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Antivirales/farmacología , Antivirales/química , Productos Biológicos/farmacología , Productos Biológicos/química , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Unión Proteica
9.
Fitoterapia ; 178: 106182, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153554

RESUMEN

Today, pharmaceutical drugs have been shown to have serious side effects, while the bioactive components of botanical plants are proven to be effective in the treatment of several diseases marked by enhanced oxidative stress and mild inflammation, often associated with minimal adverse events. Coumaroyltyramine, designated by various nomenclatures such as paprazine, N-p-trans-coumaroyltyramine, p-coumaroyltyramine and N-p-coumaroyltyramine, could be a promising bioactive ingredient to address health issues thanks to its powerful anti-inflammatory and antioxidant effects. This review represents the first in-depth analysis of coumaroyltyramine, an intriguing phenylpropanoid substance found in many species of plants. In fact, an in-depth examination of coumaroyltyramine's biological characteristics, chemical attributes, and synthesis process has been undertaken. All previous research relating to the discovery, extraction, biosynthesis, and characterization of the biologically and pharmacologically active properties of coumaroyltyramine has been reviewed and taken into consideration in this analysis. All articles published in a peer-reviewed English-language journal were examined between the initial compilations of the appropriate database until February 12, 2024. A variety of phytochemicals revealed that coumaroyltyramine is a neutral amide of hydroxycinnamic acid that tends to concentrate in plants as a reaction against infection caused by pathogens and is extracted from several medicinal herbs such as Cannabis sativa, Solanum melongena, Allium bakeri, Annona cherimola, Polygonatum zanlanscianense, and Lycopersicon esculentum. Thanks to its effectiveness in suppressing the effect of the enzyme α-glucosidase, coumaroltyramine has demonstrated antihyperglycemic activity and could have an impact on diabetes and metabolic disorders. It has considerable anti-inflammatory and antioxidant effects. These results were obtained through biological and pharmacological studies in silico, in vivo, and in vitro. In addition, coumaroyltyramine has demonstrated hypocholesterolemic and neuroprotective benefits, thereby diminishing heart and vascular disease incidence and helping to prevent neurological disorders. Other interesting properties of coumaroltyramine include anticancer, antibacterial, anti-urease, antifungal, antiviral, and antidysmenorrheal activities. Targeted pathways encompass activity at different molecular levels, notably through induction of endoplasmic reticulum stress-dependent apoptosis, arrest of the cell cycle, and inhibition of the growth of cancer cells, survival, and proliferation. Although the findings from in silico, in vivo, and in vitro experiments illustrate coumaroyltyramine's properties and modes of action, further research is needed to fully exploit its therapeutic potential. To improve our understanding of the compound's pharmacodynamic effects and pharmacokinetic routes, large-scale research should first be undertaken. To determine whether coumaroyltyramine is clinically safe and effective, further studies are required in the clinical and toxicological fields. This upcoming research will be crucial to achieving the overall potency of this substance as a natural drug and in terms of its potential synergies with other drugs.


Asunto(s)
Antiinflamatorios , Antioxidantes , Fitoquímicos , Antiinflamatorios/farmacología , Fitoquímicos/farmacología , Estructura Molecular , Antioxidantes/farmacología , Humanos , Tiramina/farmacología , Animales
10.
Heliyon ; 10(12): e33052, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39021957

RESUMEN

The Food and Drug Administration (FDA) has approved vorinostat, also called Zolinza®, for its effectiveness in fighting cancer. This drug is a suberoyl-anilide hydroxamic acid belonging to the class of histone deacetylase inhibitors (HDACis). Its HDAC inhibitory potential allows it to accumulate acetylated histones. This, in turn, can restore normal gene expression in cancer cells and activate multiple signaling pathways. Experiments have proven that vorinostat induces histone acetylation and cytotoxicity in many cancer cell lines, increases the level of p21 cell cycle proteins, and enhances pro-apoptotic factors while decreasing anti-apoptotic factors. Additionally, it regulates the immune response by up-regulating programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression, and can impact proteasome and/or aggresome degradation, endoplasmic reticulum function, cell cycle arrest, apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this study, we sought to elucidate the precise molecular mechanism by which Vorinostat inhibits HDACs. A deeper understanding of these mechanisms could improve our understanding of cancer cell abnormalities and provide new therapeutic possibilities for cancer treatment.

11.
Discov Oncol ; 15(1): 282, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008141

RESUMEN

This study on Buddleja polystachya highlights its phytochemical composition, antimicrobial activity, and cytotoxic impacts. The study emphasizes the plant's potential to treat ocular diseases by identifying important compounds involved in the bioactivity through GC-MS analysis. This study explores the antimicrobial and cytotoxic potential of Buddleja polystachya (stem and leaves) extracts, with a focus on their application in treating bacterial ocular infections and their efficacy against MCF7, HT29, and HepG2 cancer cells. Through comprehensive GC-MS analysis, a diverse array of phytochemicals was identified within Buddleja polystachya stem and leaves extracts, including carbohydrates, phenolic derivatives, fatty acids, and steroidal components. The extracts were then evaluated for their biological activities, revealing significant antimicrobial properties against a range of bacterial strains implicated in ocular infections. The research findings demonstrate that stem extracts derived from Buddleja polystachya demonstrated high to moderate cytotoxic effects on cancer cell lines MCF7, HT29, and HepG2. Notably, these effects were characterized by varying IC50 values, which suggest distinct levels of sensitivity. In contrast, leaf extracts exhibited reduced cytotoxicity when tested against all these cell lines, although they did so with a significantly higher cytotoxicity aganist HepG2 cells. The results of this investigation highlight the potential therapeutic utilization of Buddleja polystachya extracts in the management of ocular infections and cancer. These results support the need for additional research to elucidate the underlying mechanisms of action of these extracts and explore their potential as drugs.

12.
Phytother Res ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023299

RESUMEN

Myocardial infarction (MI) is considered one of the most common cardiac diseases and major cause of death worldwide. The prevalence of MI and MI-associated mortality have been increasing in recent years due to poor lifestyle habits viz. residency, obesity, stress, and pollution. Synthetic drugs for the treatment of MI provide good chance of survival; however, the demand to search more safe, effective, and natural drugs is increasing. Plants provide fruitful sources for powerful antioxidant and anti-inflammatory agents for prevention and/or treatment of MI. However, many plant extracts lack exact information about their possible dosage, toxicity and drug interactions which may hinder their usefulness as potential treatment options. Phytoconstituents play cardioprotective role by either acting as a prophylactic or adjuvant therapy to the concurrently used synthetic drugs to decrease the dosage or relief the side effects of such drugs. This review highlights the role of different herbal formulations, examples of plant extracts and types of several isolated phytoconstituents (phenolic acids, flavonoids, stilbenes, alkaloids, phenyl propanoids) in the prevention of MI with reported activities. Moreover, their possible mechanisms of action are also discussed to guide future research for the development of safer substitutes to manage MI.

13.
Curr Med Chem ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39069711

RESUMEN

BACKGROUND: Aerobic glycolysis is crucial for cancer cells to survive, grow, and progress. In the current study, the anti-cancer effects of astragalin (ASG) on breast cancer cells and in the glycolytic pathway through AMPK/mTOR have been evaluated. OBJECTIVE: The objective of this study was to examine the impact of ASG, a natural flavonoid, on glycolysis via targeting AMPK/mTOR signalling in MDA-MB-231 breast cancer cells. METHOD: The study utilized ASG, which was isolated from Haplophyllum tuberculatum. The cells were treated with different concentrations of ASG (20 and 40 µg/mL), and anti- glycolytic activities were measured through cell proliferation, expression of glycolytic enzymes (HK-2, LDH-A, GLUT-1), glucose uptake, and lactate concentration assays. The MTT assay was used to assess cellular proliferation, while the glucose uptake and lactate levels were determined by employing colorimetric assays. The mRNA expression of target glycolytic enzymes was determined by qRT-PCR. The protein levels of glycolytic targets, as well as that of AMPK and mTOR, were determined by western blot. in silico docking of ASG was done with mTOR and AMPK proteins. RESULT: Astragalin exhibited dose- and time-dependent anti-proliferative effects in MDA-MB-231 cells. In breast cancer cells, the mRNA and protein expression of GLUT-1, LDH-A, and HK-2 were all significantly downregulated after receiving ASG treatments. Furthermore, after ASG treatments, MDA-MB231 cells showed a significant decrease in lactate and glucose uptake compared to control cells. Mechanistically, ASG increased AMPK activation and suppressed mTOR activation in these cells. The inhibitory role of ASG on aerobic glycolysis was prevented by treatments with compound C (an AMPK inhibitor). However, combined treatment of compound C and ASG could nullify the ASG-induced anti-glycolysis effect and restore the level of p-AMPK and p-mTOR in MDA-MB231 cells. The results from molecular docking predicted that ASG had the potential to bind AMPK and mTOR, with free energy for binding, -8.2 kcal/mol and -8.1 kcal/mol, respectively. CONCLUSION: Taken together, the findings from this study indicated that ASG might modulate the AMPK/mTOR pathway to inhibit aerobic glycolysis and proliferation of MDAMB231 breast cancer.

14.
Biomed Pharmacother ; 177: 117072, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991301

RESUMEN

The development of natural substances derived from nature poses a significant challenge as technologies for the extraction and characterization of active principles advance. Hispolon has received a lot of attention in recent years, ascribable to its wide range of biological activities. It is a phenolic molecule that was extracted from several mushroom species such as Phellinus igniarius, Phellinus linteus, Phellinus lonicerinus, Phellinus merrillii, and Inonotus hispidus. To provide a comprehensive overview of the pharmacological activities of hispolon, this review highlights its anticancer, anti-inflammatory, antioxidant, antibacterial, and anti-diabetic activities. Several scientific research databases, including Google Scholar, Web of Science, PubMed, SciFinder, SpringerLink, Science Direct, Scopus, and, Wiley Online were used to gather the data on hispolon until May 2024. The in vitro and in vivo studies have revealed that hispolon exhibited significant anticancer properties through modifying several signaling pathways including cell apoptosis, cycle arrest, autophagy, and inhibition of angiogenesis and metastasis. Hispolon's antimicrobial activity was proven against many bacterial, fungal, and viral pathogens, highlighting its potential use as a novel antimicrobial agent. Additionally, hispolon displayed potent anti-inflammatory activity through the suppression of key inflammatory mediators, such as inducible NO synthase (iNOS), tumor necrosis factor-α (TNF-α), and cyclooxygenases-2 (COX-2), and the modulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. The antioxidant potential of hispolon was attributed to its capacity to neutralize reactive oxygen species (ROS) and to increase the activity of antioxidant enzymes, indicating a possible involvement in the prevention of oxidative stress-related illnesses. Hispolon's antidiabetic activity was associated with the inhibition of aldose reductase and α-glucosidase. Studies on hispolon emphasized its potential use as a promising scaffold for the development of novel therapeutic agents targeting various diseases, including cancer, infectious diseases, inflammatory disorders, and diabetes.


Asunto(s)
Antiinflamatorios , Antineoplásicos , Antioxidantes , Animales , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Antineoplásicos/farmacología , Antineoplásicos/aislamiento & purificación , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación , Iminoazúcares/farmacología , Iminoazúcares/química , Transducción de Señal/efectos de los fármacos , Catecoles
15.
Int J Pharm ; 662: 124403, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38944167

RESUMEN

Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.


Asunto(s)
Neoplasias de la Mama , ARN Interferente Pequeño , ARN Interferente Pequeño/administración & dosificación , Humanos , Neoplasias de la Mama/terapia , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Animales , Sistemas de Liberación de Medicamentos/métodos , Nanotecnología/métodos , Nanopartículas , Medicina de Precisión/métodos , Distribución Tisular , Silenciador del Gen
16.
Curr Pharm Des ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38867533

RESUMEN

BACKGROUND: Cocrystals are an efficient way for the delivery of low soluble drugs but when dissolved they rapidly disproportionate. To formulate the cocrystals in tablets, cocrystals must be stabilized. In this study ibuprofen-nicotinamide (IBU-NIC) cocrystals were synthesized initially by slow solvent evaporation and for bulk production by fast solvent evaporation techniques. METHOD: The cocrystals were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectrophotometer (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and optical microscopy. The ibuprofen cocrystals showed greater solubility compared to the parent drug. RESULT: Intrinsic dissolution data was utilized for efficacious screening of tablet formulations. Using hydrophilic polymers at a ratio of 6:1 (polymer to IBU-NIC cocrystal ratio), hydroxypropyl methylcellulose (F1), polyvinylpyrrolidone (PVP) K-30 (F2) and PVP K-90 (F3), three tablet formulations were prepared that stabilized cocrystals during dissolution. The drug release profiles after 60 minutes from formulations F1 (92.30), F2 (98.54), F3 (99.88) were all higher compared to the marketed brand BRUFEN® F, (79.61%) in a simulated intestinal media (p<0.001). CONCLUSION: Significant increase in the dissolution rate of cocrystal was observed with no phase change in all formulations.

17.
Biomed Pharmacother ; 177: 116886, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945700

RESUMEN

Colorectal cancer (CRC) is one of the most significant forms of human cancer. It is characterized by its heterogeneity because several molecular factors are involved in contiguity and can link it to others without having a linear correlation. Among the factors influencing tumor transformation in CRC, transforming growth factor-beta (TGF-ß) plays a key promoter role. This factor is associated with human colorectal tumors with a very high prognosis: it increases the survival, invasion, and metastasis of CRC cells, thus functioning as an oncogene. The inhibition of this factor can constitute a major therapeutic route for CRC treatment. Various chemical drugs including synthetic molecules and biotherapies have been developed as TGF-ß inhibitors. Moreover, the scientific community has recently shown a major interest in screening natural drugs inhibiting TGF-ß in CRC. In this context, we carried out this review article using computerized databases, such as PubMed, Google Scholar, Springer Link, Science Direct, Cochrane Library, Embase, Web of Science, and Scopus, to highlight the molecular mechanism of TGF-ß in CRC induction and progression and current advances in the pharmacodynamic effects of natural bioactive substances targeting TGF-ß in CRC.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Factor de Crecimiento Transformador beta , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Terapia Molecular Dirigida
18.
Sci Rep ; 14(1): 12588, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822113

RESUMEN

The COVID-19 has had a significant influence on people's lives across the world. The viral genome has undergone numerous unanticipated changes that have given rise to new varieties, raising alarm on a global scale. Bioactive phytochemicals derived from nature and synthetic sources possess lot of potential as pathogenic virus inhibitors. The goal of the recent study is to report new inhibitors of Schiff bases of 1,3-dipheny urea derivatives against SARS COV-2 spike protein through in-vitro and in-silico approach. Total 14 compounds were evaluated, surprisingly, all the compounds showed strong inhibition with inhibitory values between 79.60% and 96.00% inhibition. Here, compounds 3a (96.00%), 3d (89.60%), 3e (84.30%), 3f (86.20%), 3g (88.30%), 3h (86.80%), 3k (82.10%), 3l (90.10%), 3m (93.49%), 3n (85.64%), and 3o (81.79%) exhibited high inhibitory potential against SARS COV-2 spike protein. While 3c also showed significant inhibitory potential with 79.60% inhibition. The molecular docking of these compounds revealed excellent fitting of molecules in the spike protein receptor binding domain (RBD) with good interactions with the key residues of RBD and docking scores ranging from - 4.73 to - 5.60 kcal/mol. Furthermore, molecular dynamics simulation for 150 ns indicated a strong stability of a complex 3a:6MOJ. These findings obtained from the in-vitro and in-silico study reflect higher potency of the Schiff bases of 1,3-diphenyl urea derivatives. Furthermore, also highlight their medicinal importance for the treatment of SARS COV-2 infection. Therefore, these small molecules could be a possible drug candidate.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2 , Bases de Schiff , Glicoproteína de la Espiga del Coronavirus , Urea , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Bases de Schiff/química , Bases de Schiff/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Urea/farmacología , Urea/análogos & derivados , Urea/química , Humanos , Tratamiento Farmacológico de COVID-19 , COVID-19/virología
19.
Heliyon ; 10(9): e30547, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726163

RESUMEN

The present article describes the muscle relaxant and antipyretic effects of pentacyclic triterpenes, oleanolic acid (OA), ursolic acid (UA) and betulinic acid (BA) isolated from roots of Diospyros lotus in animal models. The muscle relaxant effects of isolated pentacyclic triterpenes were determined by chimney and inclined plane tests. In the chimney test, pretreatment of pentacyclic triterpenes evoked significant dose dependent influence on muscle coordination. When administered intraperitoneally (i.p.) to mice at 10 mg/kg for 90 min, OA, UA, and BA exhibited muscle relaxant effects of 66.72 %, 60.21 %, and 50.77 %, respectively. Similarly, OA, UA, and BA (at 10 mg/kg) illustrated 65.74 %, 59.84 % and 51.40 % muscle relaxant effects in the inclined plane test. In the antipyretic test, significant amelioration was caused by pretreatment of all compounds in dose dependent manner. OA, UA, and BA (at 5 mg/kg) showed 39.32 %, 34.32 % and 29.99 % anti-hyperthermic effects, respectively 4 h post-treatment, while at 10 mg/kg, OA, UA, and BA exhibited 71.59 %, 60.99 % and 52.44 % impact, respectively. The muscle relaxant effect of benzodiazepines is well known for enhancement of GABA receptors. There may exist a similar mechanism for muscle relaxant effect of pentacyclic triterpenes. The in-silico predicted binding pattern of all the compounds reflects good affinity of compounds with GABAA receptor and COX-2. These results indicate that the muscle relaxant and antipyretic activities of these molecules can be further improved by structural optimization.

20.
Integr Cancer Ther ; 23: 15347354241256649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819027

RESUMEN

BACKGROUND: Metastatic secondary ocular tumors spread from systemic malignancies, including breast cancer. This study aimed to evaluate the cytotoxicity of extracts from 5 medicinal plants native to Saudi Arabia. METHODS: For preliminary activity screening, cytotoxicity using the MTT assay and selectivity index determinations were made for medicinal plant extracts against various cancer cell-lines. The most promising extract was subjected to GC-MS analysis to determine the phytochemical composition. Clonogenic assays were performed using the most promising extract to confirm the initial results. Finally, western blot analysis was used to determine the modulation in expression of survivin and P27 suppressor genes in the human breast adenocarcinoma (MCF7) cell-line to understand the potential mechanistic properties of the active plant extract. RESULTS: The 5 plant extracts showed various cytotoxic activity levels using IC50. The most active extract was found to be the leaves of Capparis spinosa L. (BEP-07 extract) against the MCF7 breast cancer cell-line (IC50 = 3.61 ± 0.99 µg/ml) and selectivity index of 1.17 compared to the normal human fetal lung fibroblast (MRC5) cells. BEP-07 extract showed a dose dependent clonogenic effect against the MCF7 colonies which was comparable with the effect of doxorubicin. BEP-07 extract caused a significant decrease of survivin and increase in P27 expression compared to control GAPDH at its highest dose (14 µg/ml). The GC-MS chromatogram of Capparis spinosa L. (BEP-07 extract) revealed the existence of 145 compounds, belonging to the diverse classes of phytoconstituents. Fatty acids and their derivatives represent 15.4%, whilst octadecanoic acid, 2,3-dihydroxypropyl ester was the principal component (7.9%) detected. CONCLUSION: Leaves of Capparis spinosa L. (BEP-07 extract) exhibited a significant cytotoxic effect particularly against breast cancer cells. It exhibited this effect through survivin inhibition and via P27 upregulation. The detected phytoconstituents in the plant extract might be involved in tested cytotoxic activity, while further investigations are required to complete the drug candidate profile.


Asunto(s)
Extractos Vegetales , Plantas Medicinales , Humanos , Arabia Saudita , Extractos Vegetales/farmacología , Plantas Medicinales/química , Células MCF-7 , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Survivin/metabolismo , Antineoplásicos Fitogénicos/farmacología , Cromatografía de Gases y Espectrometría de Masas/métodos , Fitoquímicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA