Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(13): 6998-7009, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38507729

RESUMEN

Chemical exploration for two isolates of the recently described ascomycete species Polyphilus sieberi, derived from the eggs of the plant parasitic nematode Heterodera filipjevi, afforded the identification of many compounds that belong to various metabolite families: two previously undescribed chlorinated cyclotetrapeptides, omnipolyphilins A (1) and B (2), one new pyranonaphthoquinone, ventiloquinone P (3), a 6,6'-binaphto-α-pyranone dimer, talaroderxine D (4) in addition to nine known metabolites (5-13) were isolated from this biocontrol candidate. All isolated compounds were characterized by comprehensive 1D, 2D NMR, and HR-ESI-MS analyses. The absolute configurations of the cyclotetrapeptides were determined by a combination of advanced Marfey's method, ROE correlation aided by conformational analysis, and TDDFT-ECD calculations, while ECD calculations, Mosher's method, and experimental ECD spectra were used for ventiloquinone P (3) and talaroderxine D (4). Among the isolated compounds, talaroderxine D (4) showed potent antimicrobial activities against Bacillus subtilis and Staphylococcus aureus with MIC values of 2.1 and 8.3 µg mL-1, respectively. Additionally, promising inhibitory effects on talaroderxine D (4) against the formation of S. aureus biofilms were observed up to a concentration of 0.25 µg mL-1. Moreover, ophiocordylongiiside A (10) showed activity against the free-living nematode Caenorhabditis elegans.


Asunto(s)
Ascomicetos , Tylenchoidea , Humanos , Animales , Staphylococcus aureus , Bacillus subtilis , Estructura Molecular
2.
Chem Biodivers ; 21(4): e202400385, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421379

RESUMEN

Chemical prospection of an extract derived from a saprotrophic fungus Lachnum sp. IW157 resulted in the isolation and characterization of six unprecedentedly reported ambuic acid analogues named lachnuoic acids A-F (1-6). Chemical structures of 1-6 were determined based on comprehensive 1D and 2D NMR spectroscopic analyses together with HR-ESI-MS spectrometry. The relative configurations of 1-3 were defined by ROESY spectroscopic analyses while their absolute configurations were unambiguously determined by Mosher's esters method. All isolated compounds were subjected to cytotoxic, antimicrobial, antibiofilm and nematicidal activity assays where only lachnuoic acid A (1) revealed potent antimicrobial activity against Staphylococcus aureus and Bacillus subtilis at MIC values of 16.6 and 8.3 µg/mL, respectively.


Asunto(s)
Antiinfecciosos , Ascomicetos , Estructura Molecular , Ascomicetos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Ciclohexanonas
3.
J Fungi (Basel) ; 10(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38248978

RESUMEN

Fungi are known as prolific producers of bioactive secondary metabolites with applications across various fields, including infectious diseases, as well as in biological control. However, some of the well-known species are still underexplored. Our current study evaluated the production of secondary metabolites by the entomopathogenic fungus Beauveria neobassiana from Thailand. The fermentation of this fungus in a liquid medium, followed by preparative high-performance liquid chromatography (HPLC) purification, resulted in the isolation of a new tenellin congener, namely pretenellin C (1), together with five known derivatives (2-6). Their chemical structures were elucidated by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy in combination with high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). We evaluated the antimicrobial and cytotoxic activities from all isolated compounds, as well as their inhibitory properties on biofilm formation by Staphylococcus aureus. Generally, tenellins displayed varying antibiofilm and cytotoxic effects, allowing us to propose preliminary structure-activity relationships (SARs). Among the tested compounds, prototenellin D (2) exhibited the most prominent antibiofilm activity, while its 2-pyridone congener, tenellin (4), demonstrated potent cytotoxic activity against all tested cell lines. Given the fact that the biological activities of the tenellins have so far been neglected in the past, our study could provide a good starting point to establish more concise structure-activity relationships in the near future.

4.
ACS Omega ; 8(44): 41689-41695, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970032

RESUMEN

Chemical investigation for the mycelial extract of a saprotrophic fungus Lachnum sp. IW157 growing on the common reed grass Phragmites communis afforded the identification of two polyketide metabolites diaporphasines E (1) and F (2). Chemical structures of isolated compounds were unambiguously elucidated based on extensive 1D and 2D NMR spectral analyses in addition to their high-resolution mass spectrometry. The isolated compounds were assessed for their cytotoxicity and antimicrobial and biofilm inhibitory activities. While compound 1 revealed potent cytotoxicity against the tested cell lines L929 and KB3.1 with IC50 values of 0.9 and 3.7 µM, respectively, compound 2 exhibited moderate effects on the formation of S. aureus biofilms at 31.25 µg/mL.

5.
Br Dent J ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558770

RESUMEN

Aims To develop an optimal clinical and laboratory protocol for the fabrication of 3D printing dentures.Design A prospective feasibility study across three UK dental schools.Material and methods Each patient received one conventional and one 3D-printed denture. Both dentures were constructed using the same impression, jaw registration and wax trial denture. Variables investigated included methods of digitisation of the impression and optional use of a 3D-printed baseplate for jaw registration.Results Clinicians strongly preferred 3D-printed baseplates. Patients felt that conventional and printed dentures were similar in retention and stability. More patients favoured conventional dentures over 3D-printed dentures in terms of comfort.Discussion It is feasible to combine conventional clinical work with digital techniques to produce 3D-printed dentures. 3D-printed baseplates offer a cost-effective alternative to conventional bases at the jaw registration stage. Challenges were faced in tooth positioning and managing occlusion, particularly where roots required adjustment.Conclusion 3D printing is suitable for producing baseplates for jaw registration blocks and wax trial insertions. It is feasible to produce 3D-printed dentures using conventional clinical techniques for impressions, jaw registration and wax trial insertion. The workflow used in this study for 3D-printed dentures is not superior to conventional dentures. Further work is required.

6.
Saudi J Biol Sci ; 29(3): 1673-1682, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35280554

RESUMEN

Navigating novel biological strategies to mitigate bacterial biofilms have great worth to combat bacterial infections. Bacterial infections caused by the biofilm forming bacteria are 1000 times more resistant to antibiotics than the planktonic bacteria. Among the known bacterial infections, more than 70% involve biofilms which severely complicates treatment options. Biofilm formation is mainly regulated by the Quorum sensing (QS) mechanism. Interference with the QS system by the quorum quenching (QQ) enzyme is a potent strategy to mitigate biofilm. In this study, bacterial strains with QQ activity were identified and their anti-biofilm potential was investigated against the Multidrug Resistant (MDR) Pseudomonas aeruginosa. A Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136-based bioassays were used to confirm the degradation of different Acyl Homoserine Lactones (AHLs) by QQ isolates. The 16S rRNA gene sequencing of the isolated strains identified them as Bacillus cereus strain QSP03, B. subtilis strain QSP10, Pseudomonas putida strain QQ3 and P. aeruginosa strain QSP01. Biofilm mitigation potential of QQ isolates was tested against MDR P. aeruginosa and the results suggested that 50% biofilm reduction was observed by QQ3 and QSP01 strains, and around 60% reduction by QSP10 and QSP03 bacterial isolates. The presence of AHL degrading enzymes, lactonases and acylases, was confirmed by PCR based screening and sequencing of the already annotated genes aiiA, pvdQ and quiP. Altogether, these results exhibit that QQ bacterial strains or their products could be useful to control biofilm formation in P.aeruginosa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA